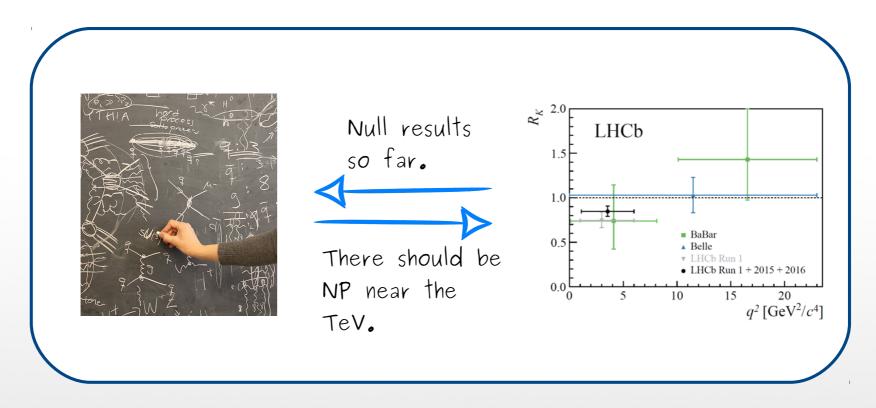


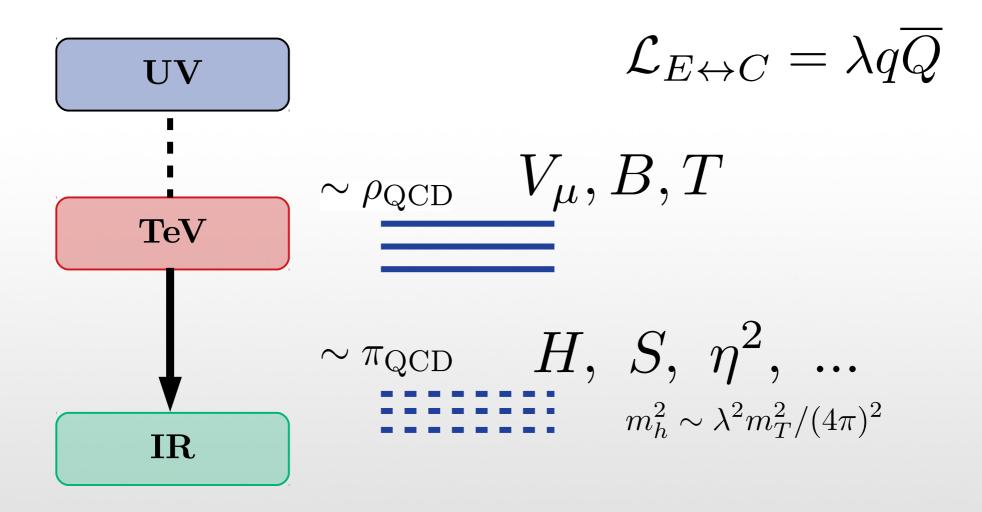
Universidade do Minho Escola de Ciências


Hints of new physics from composite Higgs models

Maria Ramos

mariaramos@lip.pt

Based on 2005.09594 and 2005.09655


Where is NP?

Look somewhere else:

(i) non-minimal predictions (ii) new signal regions (iii) experimental prospects

Composite phenomenology

Non-minimal signatures

1. There can be extra d.o.f. below the EW scale. (Pseudo-) scalar singlets are promising candidates.

Novel top decays; RGEs of SM+a EFT.**ongoing work

- 2. Heavy vector-light scalar couplings naturally arise. Exotic B-decays. [1907.13151]
- 3. New exotic channels open for the heavy quarks and leptons of the composite sector.

New collider signals of VLL.

VLL EFT and its collider signals

Search for type-III Seesaw heavy leptons in pp collisions at $\sqrt{s}=8~{
m TeV}$ with the ATLAS Detector

The ATLAS Collaboration

Abstract

A search for the pair-production of heavy leptons (N^0, L^\pm) predicted by the type-III seesaw theory formulated to explain the origin of small neutrino masses is presented. The decay channels $N^0 \to W^\pm l^\mp$ ($\ell = e_s \mu, \tau$) and $L^\pm \to W^\pm \nu$ ($\nu = \nu_e, \nu_{\mu s} \nu_{\tau}$) are considered. The analysis is performed using the final state that contains two leptons (electrons or muons), two jets from a hadronically decaying W boson, and large missing transverse momentum. The data used in the measurement correspond to an integrated luminosity of $20.3\,{\rm fb^{-1}}$ of pp collisions at $\sqrt{s}=8\,{\rm TeV}$ collected by the ATLAS detector at the LHC. No evidence of heavy lepton pair-production is observed. Heavy leptons with masses below 325–540 GeV are excluded at the 95% confidence level, depending on the theoretical scenario considered.

1506.01839 (ATLAS), 1511.01407 (CMS), 1506.01291 (ATLAS), 1905.10853 (CMS), 1911.04968 (CMS)...

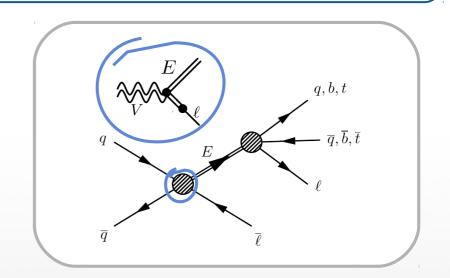
M.Chala, P Kozów, M.R., A.Titov

Unlike most searches assume, it can be that the VLLs:

(i) are mostly single produced;

(ii) populate mainly the p.s. of large E;
(iii) do not decay into SM gauge bosons.

We study these signatures in an EFT.

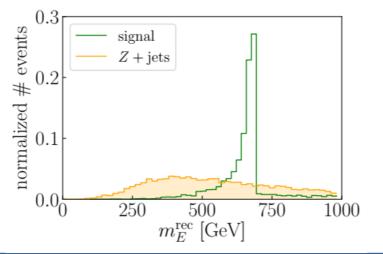

VLL EFT and its collider signals

4<0.1 by EWPD.

$$\mathcal{L} = y\overline{l_L}HE + \frac{c_i}{\Lambda^2} \left(\overline{q}\gamma^{\mu}q\right) \left(\overline{\ell}\gamma_{\mu}E\right)$$

Single production is the key:

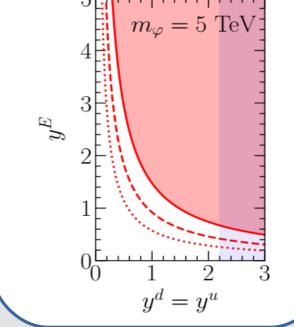
$$\sigma_{EFT} \sim rac{E^2}{\Lambda^4}$$
 vs $\sigma_{SM} \sim rac{1}{E^2}$


$$\frac{d\sigma}{d\theta} = \frac{\sin \theta}{32\pi s} \left(1 - \frac{m_E^2}{s} \right) \frac{1}{3\Lambda^4} \left[s \left(s - m_E^2 \right) \left(\frac{c_{qul}^2}{4} + c_{ue}^2 \right) + t \left(t - m_E^2 \right) \left(\frac{c_{luq}^2}{4} + c_{ue}^2 + c_{qe}^2 \right) + \ldots \right]$$

$$\text{Master equation:} \quad N = \frac{1}{\Lambda^4} \bigg[I_1^u \left(\frac{c_{qul}^2}{4} + c_{ue}^2 \right) + I_2^u \left(\frac{c_{luq}^2}{4} + c_{ue}^2 + c_{qe}^2 \right) + \ldots \bigg]$$

by recasting search for excited lepton to l+jj [CMS, 2001.04521]

Overcome of current limitations


2. Improved analysis by cutting on a new observable and including 3rd generation quarks.

3. The validity of the EFT is assured for NP scales below 10 TeV (and ops. involving only sea-quarks).

The most constrained Wilsons reach 0.05 TeV-2.

1. All operators can be taken into account. $J_{\varphi} = y^{E}\overline{E}l_{L} + y^{d}\overline{d_{R}}q_{L} + y^{u}i\sigma_{2}\overline{q_{L}}^{T}u_{R}$ 5 4 $m_{\varphi} = 5 \text{ TeV}$

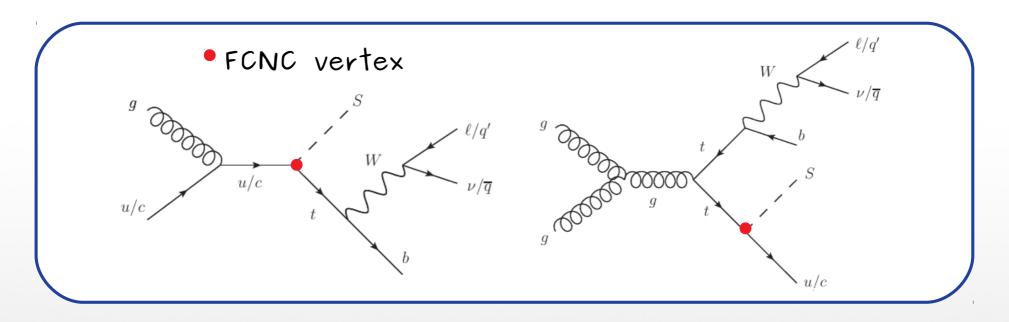
Novel signatures of rare top decays

N.Castro, M.Chala, A.Peixoto, M.R.

$$t \to Sc/u, S \to \ell^+\ell^-$$

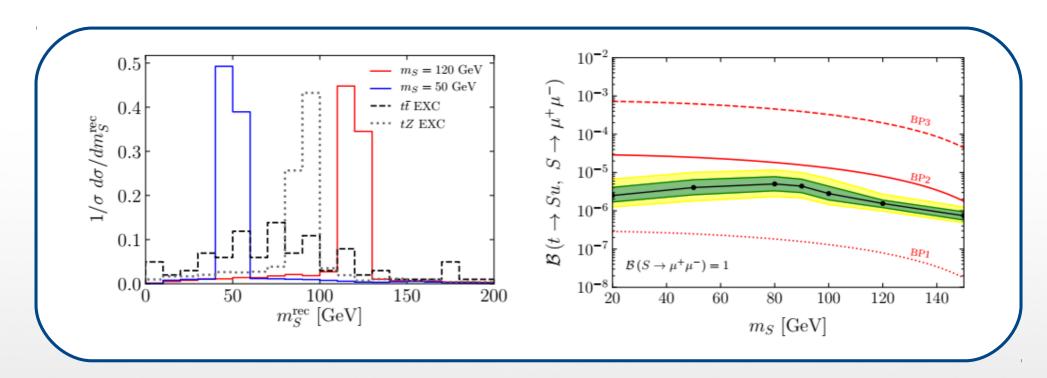
Top: huge production rate @LHC and @HL-LHC.

Pseudoscalar: very hard to detect (singlet & EDM constraints).


Why rare?

FCNCs are highly suppressed in the SM (by loops & CKM & GIM). Therefore, the ideal place to search NP.

$$\mathcal{L} \supset \frac{1}{\sqrt{2}} \overline{u_L^I} h u_R^J \left[y_{IJ}^{(1)} \left(-1 + i \gamma \frac{S}{\Lambda} + \frac{h^2}{2\Lambda^2} + \frac{S^2}{2\Lambda^2} \right) + y_{IJ}^{(2)} + \dots \right]$$


Production and analysis strategy

*muons channel

- 1. We require three light leptons and at least one jet (one of them b-tagged).
- 2. We reconstruct the scalar mass from the hardest muon pair. We reconstruct the leptonic top invariant mass.
- 3. The mass of the total system is required to be **below 1 TeV**.

Upper limits on BR with L=150/fb

NP scales as large as 90 (75) TeV can be probed with 95 % CL in the muons (taus) channel.

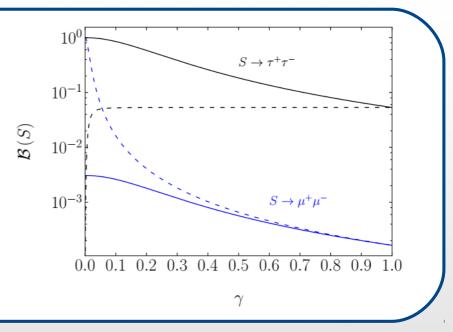
Recasting the search for top to Zq [ATLAS, 1803.09923], O(20) TeV scales are ruled out.

Conclusions

- CHMs are a rich and predictive framework with important low-energy consequences.
- VLLs can be mostly single produced and decay via dim-6 four fermions interactions. New dedicated analyses (with b and t) are important, as well as a multiple-operator interpretation.
- Top FCNCs via extra scalars are promising channels to search NP. In the leptonic channel, O(100) TeV scales could be probed @HL-LHC. Prospects are also presented for the motivated $t \to SSq$ decay.**backup
- Almost none of the non-minimal predictions have been searched for experimentally.

This is an important time to find motivation for new signal searches.

Thank you!


This work is supported by FCT under the grant PD/BD/142773/2018.

Motivation for SS decays

Assuming leptonic decay & top production is NOT generic. (Requires that only \mathbf{Y}_{i3}^{q} , \mathbf{Y}_{3i}^{q} and \mathbf{Y}_{ii}^{l} are non-zero.)

Prospects are very different if the shift symmetry is only (mostly) broken in the lepton sector. Then:

$$t \to q^i SS$$

Scales as large as 2 TeV can be probed with 150 fb-1.