

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Little Higgs Models Phenomenology

Guilherme Guedes Supervised by Prof. Nuno Castro and Prof. José Santiago

Supported by research grant: SFRH/BD/144244/2019

FCT, COMPETE2020-Portugal2020, FEDER, POCI-01-0145-FEDER-007334

Introduction and motivation – hierarchy problem

Electroweak hierarchy problem: quadratic sensitivity of Higgs boson to larger scales

• Fermions:

when $m \rightarrow 0$, recover chiral symmetry.

Gauge bosons:

when $m \rightarrow 0$, recover gauge symmetry.

Contributions to their mass are proportional to the mass itself

Introduction and motivation – hierarchy problem

Electroweak hierarchy problem: quadratic sensitivity of Higgs boson to larger scales

• Higgs boson:

no symmetry is recovered when $m \rightarrow 0$.

Contributions to its mass are quadratically proportional arbitrarily large scales

Introduction and motivation – hierarchy problem

- SUSY: introduce symmetry that ties fermions to bosons
 - Protection to fermions is extended to bosons.
- Composite Higgs models (CHM): Higgs is a bound state and not sensitive to effects above compositeness scale.

We will focus on Little Higgs models

Higgs as a pseudo-Goldstone boson

Goldstone theorem: NGB's arise when a continuous symmetry is spontaneously broken

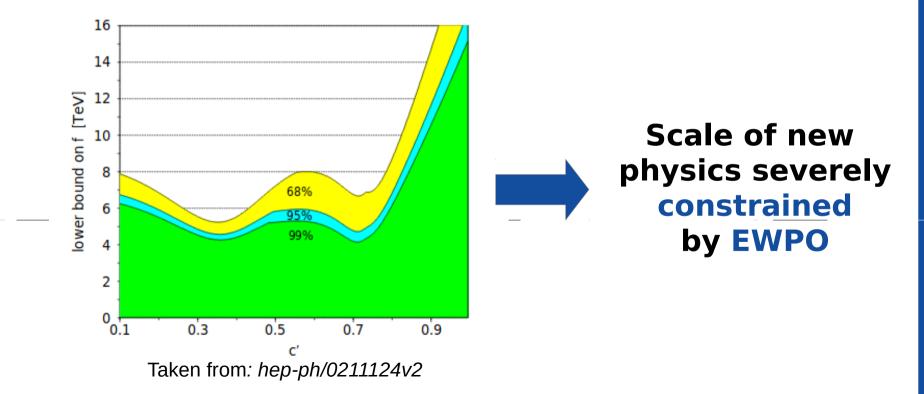
NGB's *shift* under the broken symmetry:

$$\theta \to \theta + \alpha$$

We need to explicitly break the symmetry

Littlest Higgs model:

 ${f SU(5)}
ightarrow{f SO(5)}$


Unbroken $Q_1^a + Q_2^a$ $Y_1 + Y_2$

Broken $[SU(2) \times U(1)]^2$ $Q_{1}^{a} - Q_{2}^{a}$ $Y_1 - Y_2$ $SU(2) \times U(1)$

 $\frac{SU(2)_W}{U(1)_Y}$

Heavy gauge bosons 4 eaten goldstones

Littlest Higgs model - constraints

Littlest Higgs with T-parity gauge sector

$$G_1 \xleftarrow{\mathrm{T}} G_2 \qquad g_1 = g_2, g_1' = g_2'$$

T-even

$$W^{\pm} = \frac{1}{2} \left[\left(W_1^1 + W_2^1 \right) \mp i \left(W_1^2 + W_2^2 \right) \right], \quad W^3 = \frac{W_1^3 + W_2^3}{\sqrt{2}}, \quad B = \frac{B_1 + B_2}{\sqrt{2}}$$

T-odd

$$W_{H}^{\pm} = \frac{1}{2} \left[\left(W_{1}^{1} - W_{2}^{1} \right) \mp i \left(W_{1}^{2} - W_{2}^{2} \right) \right], \quad W_{H}^{3} = \frac{W_{1}^{3} - W_{2}^{3}}{\sqrt{2}}, \quad B_{H} = \frac{B_{1} - B_{2}}{\sqrt{2}}$$

 A, Z, Z_H, A_H

Littlest Higgs with T-parity fermionic sector

To construct a T-parity preserving fermionic sector we need to double the fermionic content

$$\underline{\qquad} \Psi_{1} = \begin{pmatrix} -i\sigma^{2}l_{1L} \\ 0 \\ 0 \end{pmatrix} \underline{\qquad} \Psi_{2} = \begin{pmatrix} 0 \\ 0 \\ -i\sigma^{2}l_{2L} \end{pmatrix} \underline{\qquad} \\ l_{L} = \frac{l_{1L} - l_{2L}}{2} \qquad l_{HL} = \frac{l_{1L} + l_{2L}}{2}$$

Looking for vector like leptons - SM or MET

SM decays

- 50% $W\nu$
- 25% $Z\ell$
- 25% *Hl*

Decay to missing energy

- Littlest Higgs with T-parity
- Recast of slepton searches

 $BR(E \to A_H \ell)$ 100% 0%

Looking for vector like leptons - SM or MET

<u>SM decays</u>

Search for heavy lepton resonances decaying to a Z boson and a lepton in *pp* collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

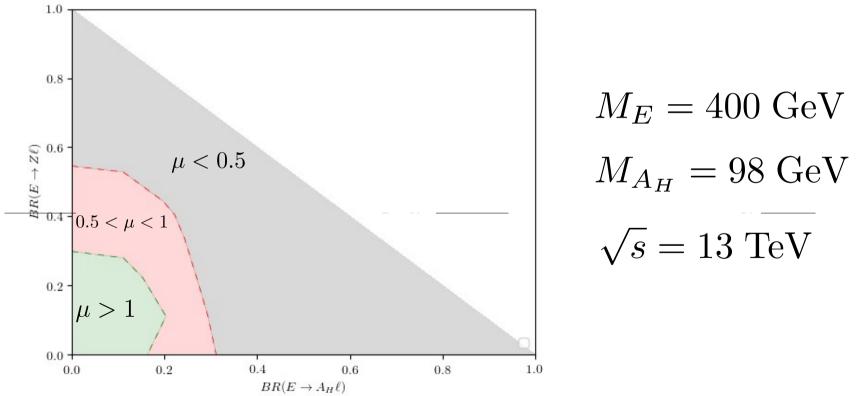
The ATLAS Collaboration

0%

1506.01291

Decay to missing energy

Search for electroweak production of supersymmetric particles in final states with two or three leptons at $\sqrt{s} = 13$ TeV with the ATLAS detector

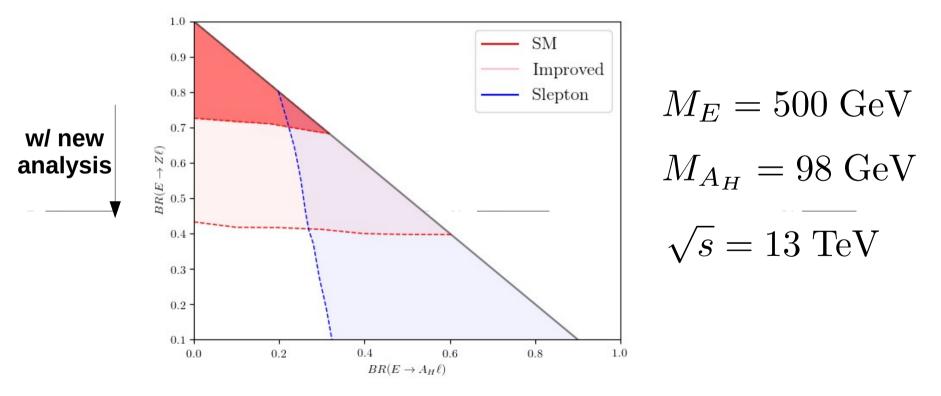

ATLAS Collaboration*

1803.02762

 $BR(E \to A_H \ell)$

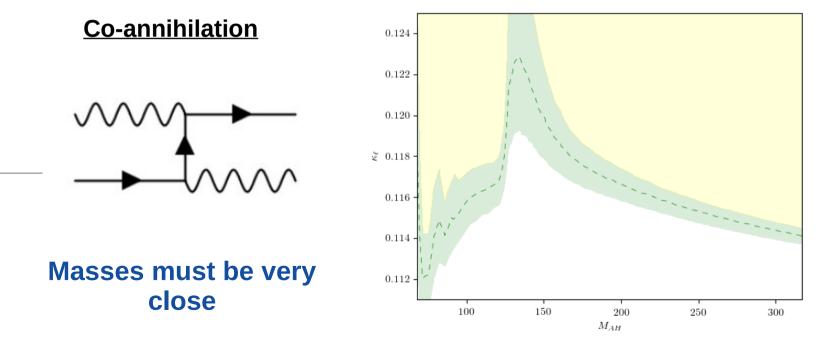
100%

Looking for vector like leptons SM and MET



Looking for vector like leptons - improving the analysis

SM Background Main background: ······ signal $WZ \rightarrow \nu \ell \ell \ell$ New cut: 0.2 $m_{TW}^2 = 2(E_T p_{T_\ell})$ 0.15 0.1 $-\not\!\!\!E_x p_{x\ell} - \not\!\!\!E_u p_{u\ell})$ 0.05 250 300 50 100 150 200 0


mtw

Looking for vector like leptons - improving the analysis

Looking for vector like leptons - dark matter

$$M_{VLL} - M_{A_H} \propto \kappa_l$$

Future work

VLL analysis:

- Improve sensitivity of slepton analysis to other decay channels
- Higher energies and luminosities

Other projects:

- Recast of Monotop searches in light of CHMs
- 1-loop matching of SMEFT + pseudoscalar

Thanks

gguedes@lip.pt Supported by research grant: SFRH/BD/144244/2019

FCT, COMPETE2020-Portugal2020, FEDER, POCI-01-0145-FEDER-007334

