Study of the Spin/CP properties of the Higgs coupling to W bosons with ATLAS at the LHC

<u>Ricardo Barrué</u>¹, Patricia Muíño¹, Rui Santos², Valerio Dao³, Jonathan Bossio⁴ ¹LIP, Instituto Superior Técnico; ²CFTC-FCUL, ISEL; ³CERN; ⁴McGill University

Outline

Precision Higgs studies
 ATLAS Jet Trigger

1. Precision Higgs studies

Precision studies of the Higgs sector

What we know about the Higgs:

- Mass ≈ 125 GeV ± 0.2%, spin 0 state
- Interactions with SM particles follow SM expectation

New physics at an energy scale Λ » v may have an indirect (small) effect on Higgs boson interactions sm /

The HWW interaction vertex and boosted WH production

HWW vertex, studied in associated WH production

Allows separate reconstruction of W and Higgs

New physics in the interaction pushes p_{τ} distributions to higher values

Higher sensitivity in the boosted (high p_τ) regime

First ATLAS search for boosted V(V=W,Z)H production

(ATLAS-CONF-2020-007)

Run: 338349 Event: 616525246 2017-10-16 20:24:46 CEST

Main contributions

Definition of boosted Higgs identification strategy

Fixed-radiusVariable-radiusSignal efficiency (%)43.739.1tt rejection factor100.0142.9

5		
W+jets rejection factor	184.3	219.5
Z _{med}	0.861	0.898

	Leading 2 subjets	All subjets
Signal efficiency (%)	39.7	42.6
tt rejection factor	142.9	83.3
W+jets rejection factor	219.5	144.5
Z _{med}	0.898	0.766

Optimization of event selection

Results

Combined significance: 2.1σ (2.7σ) observed (expected)

Consistent with SM expectations

Effective Field Theory as a tool for new physics studies

New physics can be parametrized using Effective Field Theory

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{c_i O_i^{(d)}}{\Lambda^{4-d}}$$

Can be obtained from models with new particles components

Advantage: (almost) model-independent

$$i\Gamma_{HWW}^{\mu\nu}(k_{1},k_{2}) = i(g_{2}m_{W}) \left[g^{\mu\nu} \left((1+a_{W}) - \frac{b_{W1}}{m_{W}^{2}}(k_{1}\cdot k_{2}) \right) + \frac{b_{W1}}{m_{W}^{2}} k_{1}^{\nu}k_{2}^{\mu} + \frac{c_{W}}{m_{W}^{2}} \epsilon^{\mu\nu\rho\sigma}k_{1_{\rho}}k_{2_{\sigma}} \right]$$
SM CP-even CP-even CP-odd

Angular observables – why?

Cross-section measurements:

- Insensitive to small couplings of CP-odd components
- can't disentangle between anomalous components with different Spin/CP properties

Previous work: studied a set of angular observables defined in <u>arXiv:1409.5449</u>

Results I

- $\cos \theta^*$ distinguishes between SM and anomalous components
- $\cos \delta^+$ needs more luminosity to distinguish between CP-even and CP-odd components

Results II

Both variables are well modelled for the main background

2. ATLAS Jet Trigger

Jet Trigger

The ATLAS jet trigger selects (in real time) events based on the existence of high p_{τ} jets.

Present: working on development and maintenance of tool used to calculate efficiency of jet-based trigger algorithms

 will be contributing to paper of jet trigger performance with the LHC Run 2 dataset

Future: study and validate jet trigger performance with first Run 3 data

Thanks!

Any questions?

Backup

Operators and angular observables

$$egin{aligned} \mathcal{O}_{HW} &= \Phi^{\dagger} \Phi W^{i \mu
u} W^{i}_{\mu
u} \left(ext{CP-even}
ight) & \mathcal{O}_{H ilde{W}} &= \Phi^{\dagger} \Phi ilde{W}^{i \mu
u} W^{i}_{\mu
u} \left(ext{CP-odd}
ight) \ & \cos heta^{*} &= rac{p_{\ell}^{(W)} \cdot (p_{H} imes p_{W})}{|p_{\ell}^{(W)}| |p_{W}|} & \cos \delta^{+} &= rac{p_{\ell}^{(W)} \cdot (p_{H} imes p_{W})}{|p_{\ell}^{(W)}| |p_{H} imes p_{W}|} \end{aligned}$$

p₁^(W): 3-momentum of electron or muon in W rest frame

• All other 3-momenta defined in the lab frame