Search for CP-odd ttH production with H to bb in ATLAS

IDPASC workshop, June 25th 2020

Ana Luísa Carvalho Ricardo Gonçalo, Patricia Conde Muiño

SFRH/BD/143435/2019

Motivation

- According to the Standard Model of Particle Physics (SM), the Higgs boson is a CP-even particle, meaning that its properties are invariant under combined charge-parity (CP) transformations
- A pure CP-odd Higgs boson has been excluded at 99.98% confidence level

The presence of CP-odd components in the Higgs boson couplings is predicted by many beyond the SM models and its discovery would be a clear sign of new physics phenomena

Analysis overview

This analysis looks for CP-odd components in the interaction between the Higgs boson and top quarks

- α is the CP-mixing angle that is predicted to be equal to 0 in the SM
- Event yields and shape of distributions of CP-sensitive variables are used as input to a likelihood fit to set limits on the value of α

Experimental signature

Both tops decay leptonically ⇒ **Dileptonic channel**

- 2 charged leptons
- 4 jets containing B-hadrons (b-jets)

One top decays leptonically and the other hadronically ⇒ Semileptonic channel

- 1 charged lepton
- 6 jets: 4 b-jets

Higgs boson has a high transverse momentum ($p_T \sim 300 \text{ GeV}$) \Rightarrow Two b-quarks are more efficiently reconstructed using a single jet with a large radius parameter \Rightarrow **Boosted channel**

Event selection

Trigger: \ge 1 isolated lepton with pT \ge 20 GeV

In order to take advantage of the higher jet and b-jet multiplicities of the ttH signal process, events are classified into non-overlapping analysis categories

Regions	No. leptons	No. jets	No. b-tagged jets	No. Higgs candidates
CR ^{3j,3b} hi	= 2 (dileptonic channel)	= 3	= 3	-
CR ^{≥4j,3b} lo		≥ 4		_
CR ^{≽4j,3b} hi				-
SR ^{≽4j,≥4b}			≥ 4	_
SR ^{5j,≥4b}	= 1 (semileptonic channel)	= 5	≥ 4	-
SR ^{≥6j,≥4b}		≥6		_
SR _{boosted}		≥ 4	≥ 3	≥ 1

Event categorization

Resolved inclusive signal regions are further divided according to the output of a boosted decision tree (BDT) trained to separate signal (ttH) from background (tt+b)

Background composition

Main background is tt+≥1b in all regions

tt +V

🗌 tt + I, 4t

Sensitivity to CP structure

The output of a BDT trained to separate CP-even ttH events from CP-odd ones is used as the final discriminant

- Different BDT's are trained for the inclusive 4-jet, 5-jet and ≥6-jet regions
- Input variables are chosen to optimize CP-even/odd discrimination in each category
 - Lab-frame observables probe boost of Higgs and top-quark systems
 - Angular variables probe helicity and spin correlations

Semileptonic resolved analysis region

- Example of distribution used as input to the likelihood fit
- Yield and shape of MC samples is allowed to change to best fit the data
- Data/MC agreement is not great pre-fit
- CP-even ttH shifted towards low CP-BDT values
- CP-odd ttH shifted towards high CP-BDT values

Statistical analysis

A binned likelihood fit is performed to extract the value of the CP-mixing angle (α)

- Likelihood function is constructed as a product of Poisson probability terms over all bins
- Normalization factor of tt+≥1b background is free-floated
- A gaussian prior is used for the other nuisance parameters
- Measured best-fit value of α is the one that maximizes the likelihood function

$$q_{\alpha} = -2\ln\frac{\mathcal{L}(\alpha)}{\mathcal{L}(\hat{\alpha})}$$

Value of α that maximizes the likelihood

Before looking at real data, it is possible to estimate the analysis sensitivity to the parameter of interest (α) \Rightarrow Asimov fits

- Perfect dataset following exactly the Monte Carlo description
- If everything is ok, this fit should return exactly the value of α that was used to generate the model

Analysis sensitivity

⇒ Asimov data set created using a CP-even (SM) Higgs boson

- For each value of α, the ratio of likelihood is calculated
- A larger value means a larger disagreement between data and Monte Carlo
- Semileptonic channel drives the sensitivity
- Combined fit
 - \circ CP-odd exclusion of 1.86 σ
 - Expected uncertainty on α is 0.26 π (47°)

Conclusions

- This analysis was designed and implemented by the LIP group
- Started contributing to the analysis ~6 months ago
- Contributions so far
 - 1. Asimov fits to estimate sensitivity and assess impact of different analysis strategies and systematic models (previous slide)
 - 2. Validation of the linear interpolation between CP-even/odd ttH (neglect interference)
 - 3. Investigation of largest systematic uncertainties and implementation of a ranking procedure
 - 4. Data background-only fits to assess the robustness of background model

Thank you