

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

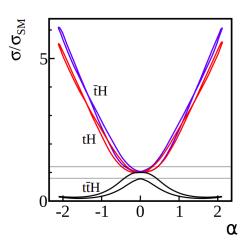
Probing the CP nature of the top-Higgs coupling in ATLAS

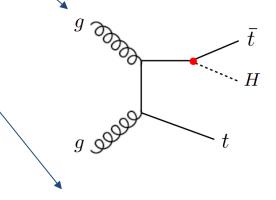
CERN/FIS-PAR/0008/2017

Emanuel Gouveia (e.gouveia@cern.ch),

Ana Luísa Carvalho, Luis Coelho, Ricardo Gonçalo, António Onofre

6th IDPASC students Workshop 25th June 2020

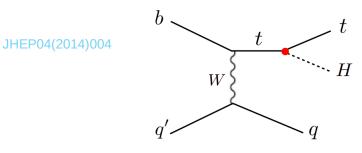

Outline


- For motivation and analysis strategy check:
 - O talk by Ana Luísa Carvalho
 - o poster by Luis Coelho
- I'll focus on a limited set of important aspects of the analysis
- 1. Signal modelling
- 2. tt+b modelling
- 3. Impact of systematic uncertainties
- 4. Background-only fits to data
- 5. Conclusion

1. Signal modelling

Signal definition $\mathcal{L}_{tth} = y_t \bar{\psi}_t \kappa'_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t h$ $= y_t \bar{\psi}_t (\kappa_t + i\gamma_5 \tilde{\kappa}_t) \psi_t h$

- Signal is primarily **ttH** with H→bb, drives the analysis strategy
- Top-Higgs coupling also affects tH
 - Not very different final state
 - Cross-section strongly affected by CP-odd coupling
- Assuming H→bb is SM



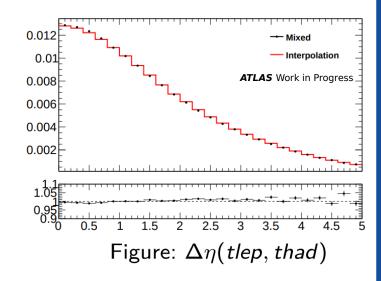
 $\kappa_t \equiv \kappa_t' \cos \alpha$

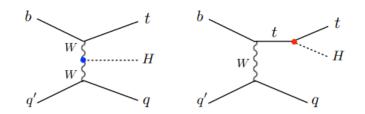
 $\tilde{\kappa}_t \equiv \kappa_t' \sin \alpha$

Ñ

K₊

Signal modelling

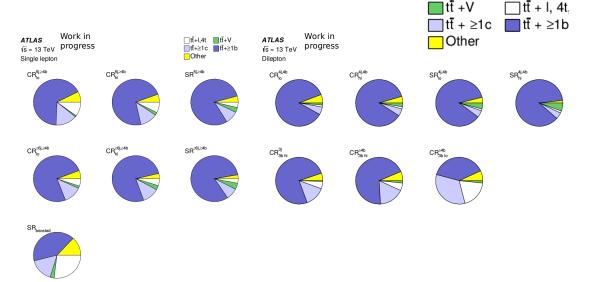

- Monte Carlo samples available for a few points in parameter space
- For ttH, using CP-even and CP-odd yields per bin weighted as:

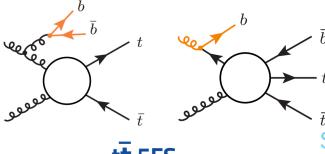

$$y(\kappa_t, \tilde{\kappa_t}) = \kappa_t^2 y_{\text{even}} + \tilde{\kappa_t}^2 y_{\text{odd}}$$

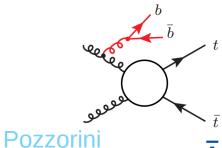
- tH is more complicated due to interference
- Parametrise yields per bin using a polynomial with all possible terms

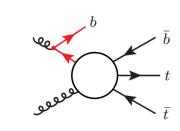
$$\frac{y(\kappa_t, \tilde{\kappa_t})}{y_{\text{even}}} = A\kappa_t^2 + B\tilde{\kappa_t}^2 + C\kappa_t + D\tilde{\kappa_t} + E\kappa_t\tilde{\kappa_t} + F$$

- Find coefficients by fitting MC samples available for several points
- Implementation and validation of these parameterisations driven by LIP




2. tt+b modelling


t**t**+b


- tt+jets samples split into tt+light, tt+c, tt+b based on truth-level hadrons
- At least one b-hadron matched to a jet (not from top decay) $\rightarrow t\bar{t}+b$
- Not $t\overline{t}+b$ and at least one c-hadron matched to a jet (not from top decay) $\rightarrow t\overline{t}+c$
- Not $t\overline{t}+b$ and not $t\overline{t}+c \rightarrow t\overline{t}+light$
- $t\bar{t}$ +b is the dominant background in all analysis regions

tt+bb 4-flavour tt 5-flavour scheme VS scheme

tt 5FS

Matrix element is tt @NLO

Additional b-quarks from partonshower

Massless b-quarks, possibly in initial state (5-flavour scheme)

Merging with tt+c and tt+light for free

Many alternative predictions for systematic estimation

Matrix element is tt+bb @NLO

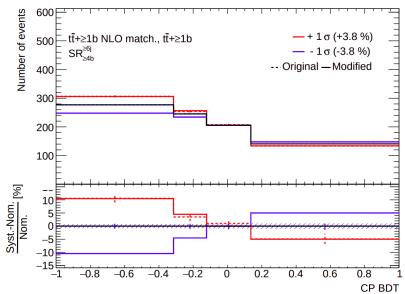
tt+bb 4FS

Massive b-quarks, no b-quarks in initial state (4-flavour scheme)

No 'recipe' from theorists for merging with tt+light and tt+c

Not sufficient options ready for two-point systematic estimation

tt+b modeling


Nominal tt+b model: tt+bb 4FS

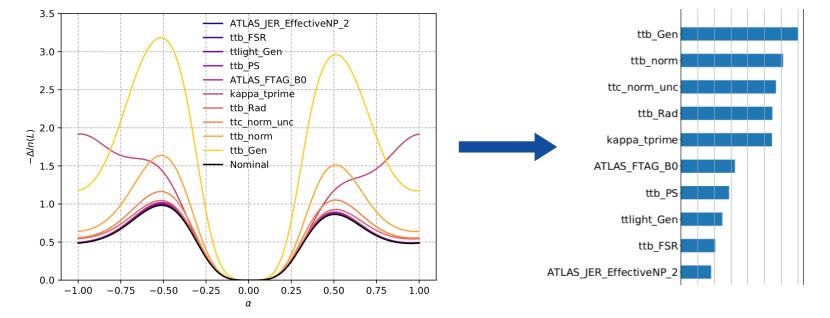
Not all uncertainties covered by $t\bar{t}+b\bar{b}$ 4FS alternative predictions:

- Compare alternative **tt5FS** predictions
- Use relative variation as systematic uncertainty

For each uncertainty, a constrained parameter θ added to the profile-likelihood fit

- $\theta=0$: nominal
- $\theta = +1$: alternative prediction
- θ =-1: symmetric of +1

3. Impact of systematic uncertainties

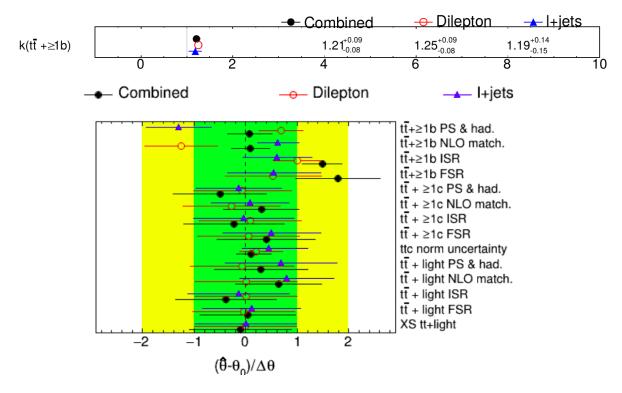

Impact of systematic uncertainties

How much does each systematic uncertainty affect our sensitivity?

How do they rank in importance?

Likelihood scan removing each uncertainty from the fit at a time

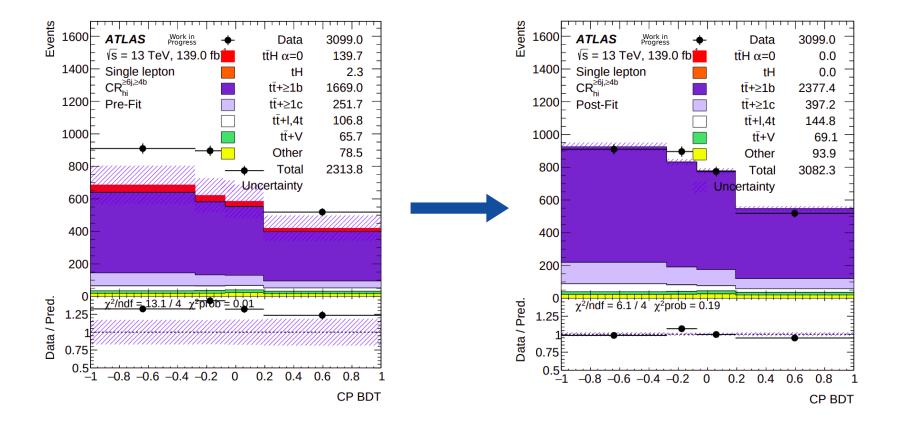
Subtract in quadrature the size of 1σ bands from the one in the nominal fit



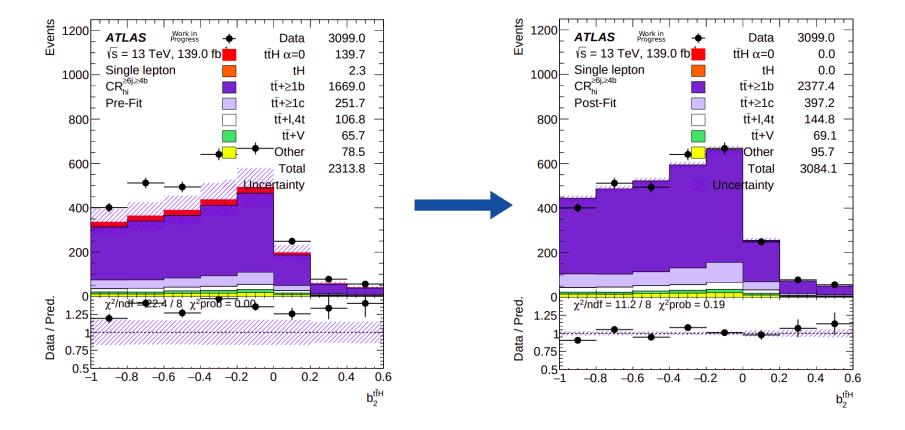
tt+b modelling uncertainties dominate (plots for I+jets channel alone)

4. Background-only fits to data

Background-only fit to data


• Validate background model by fitting it to data in signal-depleted bins

- tt+b normalisation corrected by a factor of 1.21
- Different pulls between individual channels and combination
- Most pulls well understood


Post-fit modelling

• Fit corrects modelling of the fitted distributions...

Post-fit modelling

... but also of the distributions of CP BDT input features

5. Summary

Summary

A source of CP violation in the Higgs sector could manifest itself in Yukawa couplings

• ttH production at the LHC is the best direct probe for such a scenario

In ATLAS tt(H→bb) analysis, implemented and validated signal parameterisation as a function of CP-odd coupling

Analysis limited by tt+b modelling uncertainties

- Addressing it with state-of-the-art tt+b predictions
- Using profile-likelihood fit to constrain uncertainties
- Good post-fit data/MC agreement validates model

Currently dedicating most time to writing thesis

SM analysis in approval process

CP-odd analysis should follow shortly after

Thank you