A (brief) Introduction to Non-perturbative Quantum Field Theory

Peter Lowdon

(École Polytechnique)

- 1. A non-perturbative approach. Why?
- 2. Local QFT in a nutshell
- 3. Broad implications
- 4. QCD and confinement
- 5. Summary & outlook

1. A non-perturbative approach. Why?

 Perturbation theory has proven to be an extremely successful tool for investigating problems in particle physics

But by definition this procedure is only valid in a *weakly interacting regime*

- $\rightarrow~$ Non-convergence of perturbative series
- $\rightarrow\,$ Observables: form factors, parton distribution functions, hadronic properties, ...
- \rightarrow Confinement in QCD
- This emphasises the need for a non-perturbative approach!

→ Local QFT is one such approach

• Local QFT approaches are defined by a core set of axioms:

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}_{+}^{\uparrow}}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}_+^{\uparrow}}$:

$$U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_\pm=\varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g)\pm\varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f)=0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

A. Wightman [R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and all that (1964).]

R. Haag [R. Haag, *Local Quantum Physics*, Springer-Verlag (1996).]

The central idea with Local QFT is that these axioms are physically motivated

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}_{+}^{\uparrow}}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}_+^{\uparrow}}$:

$$U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_\pm=\varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g)\pm\varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f)=0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

"The theory is invariant under Poincaré transformations"

The central idea with Local QFT is that these axioms are physically motivated

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}_{+}^{\uparrow}}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}_+^{\uparrow}}$:

$$U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm}=\varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g)\pm\varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f)=0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

"Energy is bounded from below – the theory is stable"

The central idea with Local QFT is that these axioms are physically motivated

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}_{+}^{\uparrow}}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}_+^{\uparrow}}$:

$$U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm}=\varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g)\pm\varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f)=0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

"The vacuum state is unique and looks the same to all observers"

<u>All</u> states are defined by acting with fields φ on the vacuum |0>

The central idea with Local QFT is that these axioms are physically motivated

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}_{+}^{\uparrow}}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}_+^{\uparrow}}$:

$$U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm}=\varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g)\pm\varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f)=0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

'Quantum fields φ are operator-valued distributions''

 Quantum fields φ(x) are (operator-valued) distributions – what difference does this make?

ightarrow They cannot be evaluated at a single point e.g. Dirac delta $\delta(x)$ at $x\!=\!0$

 \rightarrow Need to 'average them out' over some spacetime region ${\pmb {\cal A}}$

$$\mathcal{M}_{\varphi} := \int_{A} d^{4}x \, \varphi(x) f(x)$$

Can think of this as the performance of a localised measurement M_{φ} in the region **A** where f(x) is non-zero

[MPI Munich (2004)]

$$\Delta x \Delta p \sim \frac{\hbar}{2}$$

The central idea with Local QFT is that these axioms are physically motivated

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}_{+}^{\uparrow}}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}_+^{\uparrow}}$:

$$U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1}=S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x+a)$$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm}=\varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g)\pm\varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f)=0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

"Connects the permitted physical states with the field degrees of freedom"

• The central idea with Local QFT is that these axioms are physically motivated

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}_{+}^{\uparrow}}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}_+^{\uparrow}}$:

$$U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm}=\varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g)\pm\varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f)=0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

A cannot send a message to B if they are space-like separated

3. Broad implications

- Despite their simplicity, these axioms give rise to many important consequences:
 - \rightarrow Correlation functions $\langle 0|\varphi_{l_1}^{(\kappa_1)}(x_1)\cdots\varphi_{l_n}^{(\kappa_n)}(x_n)|0\rangle$ are **distributions**
 - \rightarrow A QFT can be fully reconstructed from knowledge of all of the correlation functions
 - ightarrow Connection of Minkowski and Euclidean QFTs (t
 ightarrow i au)

[The University of Toronto (2004)]

 \rightarrow CPT is a symmetry of *any* theory

4. QCD and confinement

- So far, the (*Wightman*) axioms 1-6 we have discussed are known to apply to relatively simple (e.g. scalar) QFTs
- For theories of physical interest, i.e. gauge theories, significant complications arise...
- In the case of QCD, understanding these complications is essential for unravelling the <u>non-perturbative</u> structure of correlation functions

- Enter into the calculation of bound-state observables; meson spectra, decay constants, glueball masses,...
- QCD phase diagram: effects of finite temperature and density
- Confinement mechanism

4. QCD and confinement

- To understand confinement is to know why nature doesn't allow the existence of physical (colour) charged states in QCD
- Or... why can't we 'pull apart' composite neutral states?

[The University of Adelaide (2015)]

- It turns out that this characteristic is closely related to the type of contributions that can appear in correlation functions
- Interestingly, contributions that prevent composite states from being pulled apart are not allowed in QFTs satisfying axioms 1-6, but <u>can</u> appear in gauge theories!

4. QCD and confinement

• An important example of these contributions are *generalised poles*, which appear in (Euclidean) correlation functions in the form:

$$D_i(p) = \frac{Z_i}{(p^2 + m_i^2)^{i+1}}, \quad i \ge 1$$

- Using non-perturbative data, e.g. from lattice simulations, one can look for these type of contributions
- Performing fits to (Landau gauge) lattice data for the gluon propagator [Li, PL, Oliveira, Silva, 1907.10073] it appears that the data *is* consistent with the existence of such poles
- Nevertheless, many open questions remain...

5. Summary & outlook

- Local QFT is an analytic framework that attempts to address the fundamental question: "what is a QFT?"
- The central idea is that a QFT is defined using a series of <u>physically</u> <u>motivated</u> axioms
- This implies general and often deep consequences CPT symmetry, connection of Minkowski & Euclidean QFTs, Spin-statistics Theorem, ...
- In QCD, this framework can be used to provide new insights into nonperturbative phenomena such as confinement

"Particles are the roof of the theory, not its foundation" R. Haag

[Brookhaven National Lab]

Some further reading...

- R. F. Streater and A. S. Wightman, *PCT, Spin and Statistics, and all that* (1964).
- R. Jost, The General Theory of Quantized Fields (1965).
- R. Haag, Local quantum physics: Fields, particles, algebras (1992).
- N. N. Bogolyubov, A. A. Logunov, A. I. Oksak and I. T. Todorov, *General principles of quantum field theory* (1990).
- N. Nakanishi and I. Ojima, *Covariant operator formalism of gauge theories and quantum gravity* (1990).
- F. Strocchi, An Introduction to Non-Perturbative Foundations of Quantum Field Theory (2013).

Backup

• Things become more complicated in gauge theories...

• In option (ii), to recover locality one modifies this equation, lifting the restriction, but maintaining the constraint for **physical** states

- This procedure necessarily introduces both **zero** and **negative** norm (ghost) states into the theory!
 - \rightarrow QFT axioms are modified: Pseudo-Wightman approach [Bogolubov et al.]