

Higgs sector: a perspective

Konstantinos Nikolopoulos University of Birmingham

6th IDPASC/LIP PhD Students Workshop June 25-27, Coimbra, Portugal

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement no 714893 (ExclusiveHiggs)

X. Cortada, "In search of the Higgs boson" (2013)

Higgs sector: a perspective

Konstantinos Nikolopoulos University of Birmingham

6th IDPASC/LIP PhD Students Workshop June 25-27, Coimbra, Portugal

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement no 714893 (ExclusiveHiggs)

X. Cortada, "In search of the Higgs boson" (2013)

Higgs sector: a perspective

Konstantinos Nikolopoulos University of Birmingham

6th IDPASC/LIP PhD Students Workshop June 25-27, Coimbra, Portugal

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement no 714893 (ExclusiveHiggs)

X. Cortada, "In search of the Higgs boson" (2013)

1232 superconducting dipoles
magnetic field of 8.3T
operating at 1.9K

1232 superconducting dipoles ▶ magnetic field of 8.3T ▶ operating at 1.9K

Photo Credit: https://flic.kr/p/ 14 LHC

ATLAS Collaboration: 38 countries, 183 institutes, ~3000 scientific authors

ATLAS

Agentia Istand Polund Armenia India Polugal Autorata Indonesia Romania Autorata Indonesia Romania Autorata Indonesia Bagiashi Ivriand Seregal Belarus Istal Serel Seria Belgim Italy Sovakia Bonda and Spann Seria Bugata Labaron Seria Bugata Labaron Seria Bundi Labaron Seria Calaba Madagasa Syna Calaba Madagasa Syna Calaba Madagasa Syna Colta Ros Mata Toaland Coltan Budata Toaland Colta Ros Mata Toaland Calaba Mata Toaland Calaba Mata Santa Francia Budartus Interas Seria Seria Netherland Stras Francia Netherland Stras Francia Netherland Stras Francia Netherland Stras Genes Netherland Stras Francia Netherland Stras Genes Netherland Stras Francia Netherland Stras Genes Netherland Stras Serias Mata Stras Francia Netherland Stras Genes Netherland Stras

HCb

K. Nikolopoulos / Coimbra, 25 June 2020 / Higgs sector: a perspective

ITYOF

ATLAS pp Run-2: July 2015 – October 2018

Inner Tracker			Calorimeters		Muon Spectrometer				Magnets	
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.5	99.9	99.7	99.6	99.7	99.8	99.6	100	100	99.8	98.8

Good for physics: 95.6% (139 fb⁻¹)

Luminosity weighted relative detector uptime and good data quality efficiencies (in %) during stable beam in pp collision physics runs with 25 ns bunch-spacing at \sqrt{s} =13 TeV for the full Run-2 period (between July 2015 – October 2018), corresponding to a delivered integrated luminosity of 153 fb⁻¹ and a recorded integrated luminosity of 146 fb⁻¹. Runs with specialized physics goals are not included. Dedicated luminosity calibration activities during LHC fills used 0.6% of recorded data in 2018 and are included in the inefficiency. Trigger-specific data quality problems (0.4% inefficiency at Level-1) are included in the overall inefficiency. When the stable beam flag is raised, the tracking detectors undergo a so-called "warm start", which includes a ramp of the high-voltage and turning on the pre-amplifiers for the Pixel system. The inefficiency due to this, as well as the DAQ inefficiency, are not included in the table above, but accounted for in the ATLAS data taking efficiency.

UNIVERSITY^{OF} BIRMINGHAM **11**

The Standard Model of Particle Physics

The Standard Model describes the matter particles and their interactions, and the Higgs boson

The Standard Model of Particle Physics

The Standard Model describes the matter particles and their interactions, and the Higgs boson

≈126 GeV/c²

н

Higgs boson

Force

Particles

g

gluon

γ

photon

Z boson

W boson

SONS

BO

GAUGE

91.2 GeV/c²

80.4 GeV/c²

Higgs boson is a new kind of particle neither Matter nor Force. Introduced via Brout-Englert-Higgs mechanism for W[±]/Z boson mass generation

 $\begin{aligned} \mathcal{J} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \partial \mathcal{Y} \\ &+ \mathcal{X} \cdot \mathcal{Y}_{ij} \mathcal{X}_{j} \partial + hc. \\ &+ |D_{\mu} \partial |^2 - V(\partial) \end{aligned}$

Matter

Particles

С

S

μ

 \mathcal{V}_{μ}

muon neutrino

2nd

Generations

muon

strange

105.7 MeV/c²

<0.17 MeV/c²

charm

≈95 MeV/c²

-1/3

1/2

1/2

≈173.07 GeV/c²

t

b

τ

 \mathcal{V}_{τ}

tau neutrino

3rd

tau

bottom

1.777 GeV/c²

<15.5 MeV/c²

top

≈4.18 GeV/c²

2/3

1/2

-1/3

1/2

1/2

1/2

≈1.275 GeV/c²

1/2

mass → ≈2.3 MeV/c²

1/2

U

up

C

down

e

 \mathcal{V}_{e}

electron

neutrino

1st

electron

≈4.8 MeV/c²

0.511 MeV/c²

<2.2 eV/c²

-1/3

1/2

1/2

0

1/2

 $\rightarrow 2/3$

harge

spin \rightarrow

DUARKS

.EPTONS

The Standard Model of Particle Physics

+ $\chi_i Y_{ij} \chi_j \phi$ +ha

 $+ |D_{\alpha}\varphi|^{2} - \vee(\phi)$

BOSO

AAA

UNIVERSITY^{OF} BIRMINGHAM 12

The Standard Model describes the matter particles and their interactions, and the Higgs boson

Matter Force **Particles Particles** ≈173.07 GeV/c² mass → ≈2.3 MeV/c² ≈1.275 GeV/c² ≈126 GeV/c² 2/3 harge С t g Н 1/2 1/2 spin \rightarrow Higgs boson charm gluon top up ≈4.8 <mark>MeV/c²</mark> ≈95 MeV/c² ≈4.18 GeV/c² DUARKS -1/3 -1/3 -1/3 γ S b 1/2 1/2 Higgs boson is a new down strange bottom photon kind of particle 0.511 MeV/c² 105.7 MeV/c² 1.777 GeV/c² 91.2 GeV/c² neither Matter nor Force. e μ τ 1/2 1/2 SONS Introduced via Broutelectron muon tau Z boson **Englert-Higgs mechanism** BO <0.17 MeV/c² <15.5 MeV/c² <2.2 eV/c² 80 4 GeV/c² **EPTONS** for W[±]/Z boson mass **BAUGE** \mathcal{V}_{e} \mathcal{V}_{τ} \mathcal{V}_{μ} 1/2 muon neutrino tau neutrino electron generation W boson neutrino 1st 2nd 3rd

Generations

The Higgs boson was the last particle of the SM to be discovered \rightarrow July 2012

SM Higgs boson production and decay

The Higgs boson mass was the last free parameter of the Standard Model

K. Nikolopoulos / C nbra, 25 June 2020 / Higgs sector: a perspective

Direct width measurement. Indirect method more precise but with theory assumptions

BIRMINGHAM 16

PER AD ADDIA ALTA

The Higgs boson mass was the last free parameter of the Standard Model

K. Nikolopoulos / C nbra, 25 June 2020 / Higgs sector: a perspective

more precise but with theory assumptions

PER AD AZDEA ALTA

Higgs mechanism and the Higgs boson

- SU(2)_L⊗U(1)_Y local gauge symmetry;
- electro-weak unification: massless carriers
- Symmetry spontaneously broken by Higgs field
 - ▶ 4 degrees of freedom (d.o.f)
- Higgs field obtains non-zero vacuum expectation value
- 3 d.o.f of Higgs field become longitudinal polarisations of W±/Z bosons
- 1 d.o.f of Higgs field becomes the physical Higgs boson

Higgs interactions to vector bosons: defined

by symmetry breaking

K. Nikolopoulos / Coimbra, 25 June 2020 / Higgs sector: a perspective

GLOBAL CONSERVATION LAWS AND MASSLESS PARTICLES*

G. S. Guralnik,[†] C. R. Hagen,[‡] and T. W. B. Kibble Department of Physics, Imperial College, London, England (Received 12 October 1964)

Higgs mechanism and the Higgs boson

SU(2)_L⊗U(1)_Y local gauge electro-weak unification: n
 Symmetry spontaneously
 A degrees of freedom (c
 Higgs field obtains non-ze expectation value
 3 d.o.f of Higgs field bec

polarisations of W±/Z bos

1 d.o.f of Higgs field bec Higgs boson

Higgs interactions to ve by symmetry breaking

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{D} \mathcal{A} \\ &+ i F \mathcal{D} \mathcal{A} \\ &+ \mathcal{I}_{ij} \mathcal{I}_{j} \mathcal{A}_{j} \mathcal{P} + h.c. \\ &+ |D_{\mu} \mathcal{P}|^{2} - V(\mathcal{P}) \end{aligned}$

H-V interactions

CAL REVIEW LETTERS

31 August 1964

'HE MASS OF GAUGE VECTOR MESONS*

iglert and R. Brout sité Libre de Bruxelles, Bruxelles, Belgium eived 26 June 1964)

PHYSICS LETTERS

15 September 1964

SSLESS PARTICLES AND GAUGE FIELDS

P.W.HIGGS ical Physics, University of Edinburgh, Scotland

Received 27 July 1964

CAL REVIEW LETTERS

19 October 1964

IS AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs nysics, University of Edinburgh, Edinburgh, Scotland eceived 31 August 1964)

CAL REVIEW LETTERS

16 November 1964

ATION LAWS AND MASSLESS PARTICLES*

k,[†] C. R. Hagen,[‡] and T. W. B. Kibble hysics, Imperial College, London, England (Received 12 October 1964)

35.9-137 fb⁻¹ (13 TeV)

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_i^{(7)}}{\Lambda^3} \mathcal{O}_i^{(7)} + \sum_{i} \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \cdots$$

Operator

		Wilson coefficient
	Total Stat. Syst.	C _{Hbox}
B _{γγ} /B _{ZZ*} ■	0.86 +0.14 (+0.12 +0.07	c _{HDD}
B, /B, 77.	0.63 +0.35 +0.22 +0.27	c _{HG}
Bunn/B	-0.26 (-0.16) $-0.22+0.18 (+0.13 +0.12)$	C _{HB}
	-0.16 (-0.11, -0.11)	c_{HW}
	0.87 _0.24 (_0.19' _0.14)	C _{HWB}
-0.5 0 0.5 1	1.5 2 2.5 3 3.5 4	<i>c_{Hl1}</i>
	Total Stat. Syst.	c _{Hl3}
8	$1.29 \begin{array}{c} +0.18 \\ -0.17 \end{array} \begin{pmatrix} +0.16 \\ -0.15 \end{array} \begin{array}{c} +0.09 \\ -0.08 \end{pmatrix}$	c _{He}
•	$0.57 \begin{array}{c} +0.43 \\ -0.41 \\ -0.35 \\ -0.22 \end{array} $	c_{Hq1}
GeV 📥	0.87 +0.38 +0.33 +0.18	<i>c_{Hq3}</i>
00 GeV	1 30 +0.81 +0.71 +0.39	C _{Hu}
N E	+0.56 +0.46 +0.32	C _{Hd}
	1.11 -0.51 (-0.44, -0.26)	$ c_{uG} $
eV	$2.05 \begin{array}{c} +0.84 \\ -0.72 \end{array} \begin{pmatrix} +0.73 \\ -0.64 \end{array} \begin{pmatrix} +0.43 \\ -0.32 \end{pmatrix}$	c_{ll1}
e	$1.57 \begin{array}{c} +0.45 \\ -0.38 \end{array} \begin{pmatrix} +0.36 \\ -0.32 \end{array} \begin{array}{c} +0.27 \\ -0.21 \end{pmatrix}$	
	-0.12 +1.35 (+1.31 +0.32)	
	-1.13 -1.11' -0.24'	
	-0.95 _1.48 (_1.29, _0.72)	_
I I I I I I I I I I I I I I I I I I I	2.28 +1.24 (+1.02 +0.71	$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \mathcal{L}_{ ext{SM}}$
	1 91 +2.32 (+1.44 +1.81)	4
	-1.19 \-1.00, -0.66/	

$m_{\rm e} = 125.09 \text{GeV}$ $ v < 2.5$		$B_{b\overline{b}}/B_{ZZ^*}$		0.63	+0.35 +0.22	+0.27
$n_H = 125.05 \text{ GeV}, 19 \text{ H} < 2.5$		Bww./B-	. 🛋	0.86	+0.18 +0.13	+0.12
$p_{\rm SM} = 89\%$		B /B		0.07	-0.16 \ -0.11 [,] +0.29 , +0.22	-0.11/ +0.19
⊢ ⊷-Total	Stat.	D _t t/D _{ZZ}		0.07	-0.24 (-0.19'	-0.14
Syst. SM		-0.5 0	0.5 1	1.5 2	2.5 3 3	.5 4
					Total Stat.	Syst.
	0-jət	•	1	1.29	+0.18 -0.17 (+0.16 -0.15,	+0.09 -0.08)
	1-jet, $p_{\tau}^{H} < 60 \text{ GeV}$	-		0.57	+0.43 (+0.37 -0.41 (0.35,	+0.23 -0.22
gg→H × B _{ZZ*}	1-jet, $60 \le p_T^H < 120$)GeV 🛓		0.87	+0.38 -0.34 (+0.33 -0.31,	+0.18 -0.15)
	1-jet, $120 \le p_T^H < 20$	00 GeV	-	1.30	+0.81 (+0.71 -0.72 (0.65,	+0.39 -0.30
	\geq 2-jet, $p_T^H < 200 \text{ Ge}$	•V 🛓	ł	1.11	+0.56 (+0.46 -0.51 (-0.44	+0.32 -0.26)
	\geq 1-jet, $p_T^H \geq$ 200 Ge	əV I		2.05	+0.84 -0.72 (+0.73 -0.64,	+0.43 -0.32)
	VBF topo + Rest	6	•	1.57	+0.45 (+0.36 -0.38 (-0.32,	+0.27 -0.21)
$qq \rightarrow Hqq \times B_{ZZ^*}$	VH topo			-0.12	^{+1.35} (^{+1.31} -1.13 (^{-1.11}	+0.32 -0.24)
	<i>p</i> ^{<i>j</i>} _{<i>T</i>} ≥ 200 GeV ⊢			-0.95	+1.51 (+1.34 -1.48 (-1.29,	+0.69 -0.72)
$qq \rightarrow Hlv \times B_{ZZ^*}$	<i>р</i> ^{<i>V</i>} ₇ < 250 GeV	ŀ		2.28	+1.24 (+1.02	+0.71
	$p_{\tau}^{V} \ge 250 \text{ GeV}$	- H	•	1.91	+2.32 +1.44 -1.19 (-1.00,	-0.55/ +1.81 -0.66)
	ρ ^v ₇ < 150 GeV	∔۔۔۔۔۔	 ₽H	0.85	+1.26 (+1.01 -1.57 (-0.98,	+0.76 -1.22)
gg/qq→Hll × B _{ZZ*}	$150 \le p_T^V < 250 \text{ GeV}$	V 1 📫	H	0.86	+1.29 -1.13 (+1.02 -0.90	+0.79 -0.70)
	$p_T^V \ge 250 \text{ GeV}$			2.92	+3.03 -1.50 (+1.87 -1.33,	+2.38 -0.71)
$(t\bar{t}H + tH) \times B_{ZZ^*}$			•	1.44	+0.39 (+0.30	+0.24 -0.19
-10	-5	0	5	5	10	1
			Parame	ter norn	nalized to SM	/ value

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 36.1 - 79.8 \text{ fb}^{-1}$

Higgs-fermion interactions: Yukawa couplings

Higgs interactions to vector boson: defined by symmetry breaking Higgs interactions to fermions: ad-hoc hierarchical Yukawa couplings mf

Higgs-fermion interactions: Yukawa couplings

K. Nikolopoulos / Coimbra, 25 June 2020 / Higgs sector: a perspective

oreaking a couplings∝m_f

fundamental principle BSM scenarios scale→independent task rom unitarity bounds: TeV (t, b,c,s,d,u) /. D71 (2005) 093009]

del successful particle mass inexplained!

UNIVERSITY^{of} BIRMINGHAM 21

Higgs boson-charm quark coupling

Higgs boson-charm quark coupling

- "Low level" taggers:
- * Track Impact Parameter
- * Secondary Vertices

c-jets

c jets

 $\sqrt{s} = 13$ TeV, tt

0.5

ATLAS Simulation Preliminary

c vs light

0.5

-0.5

41% efficiency

-0.5

- * JetFitter: b/c-jet decay chain fit
- "High level" tagger obtained with BDT
- c-tagging: 41% c-jet eff; 4×b-jet & 20×light jet rejection
 b-tagging: 77% b-jet eff; 6×c-jet &134×light jet rejection

c vs light

0.5

-0.5

41% efficiency

-0.5

Density

 10^{-4}

b-jets

b jets

√s = 13 TeV.

0.5

bvs c

AS Simulation Preliminary

b vs c

 10^{-5}

Zh(→cc): Results

Zh(→cc):Results

No evidence for Zh(\rightarrow cc) production with current dataset PRL120 (2018) 211802 95% CL_s upper limit: 110×SM (150+80₋₄₀)

Single tagging working point constrains linear combination of $h \rightarrow cc/h \rightarrow bb$

- \blacktriangleright Analysis in conjunction with h→bb; account for cross-contamination
- Key to future is control of systematic uncertainties
 - Phenomenological analysis (2×3000 fb⁻¹) indicates |κ_c|≤2.5-5.5 at 95% CL depending on the c-tagging scenario [Phys.Rev. D93 (2016) 013001]
 - ▶ ATLAS HL-LHC projection for Z(II)H(cc) alone µ<6.3 [ATL-PHYS-PUB-2018-016]

Zh(→cc):Results from CMS

JHEP 03 (2020) 131

Higgs sectors beyond the SM

- The SM Higgs sector is not the only possible
 - Merely the simplest one
 - Extended Higgs boson sectors can be constructed
 - Possible answers to open questions
 - ▶ With additional SU(2) scalars, doublets, triplets,..
 - The p parameter puts tight constraints on model viability

Higgs sectors beyond the SM

The SM Higgs sector is no
 Merely the simplest one
 Extended Higgs boson s
 Possible answers to op
 With additional SU(2)L s
 The ρ parameter puts tig

 $\frac{M_W^2}{M_Z^2 c_W^2} = \frac{\sum_i \left[T_i (T_i + 1) - \frac{1}{4} Y_i^2 \right] i}{\frac{1}{2} \sum_i Y_i^2 v_i^2}$ For SM ρ =1 (plus small - and was measured preci (ρ =1.00039±0.00

SM+Singlet, 2HDM, 2HDN
 Extending the Higgs sect
 e.g. 2HDM has 5 Higgs t
 Rich phenomenology

Provided they are kinema boson decays to other Hi

 $\tan \beta = 0.5$, TYPE II

h→Za→ll+jet

а

 h_{125}

- Experimentally, searches mostly focus on:
- ▶ h→aa
- a decays to down-type fermions
- Novel search: $h \rightarrow Za$ with $a \rightarrow hadrons$
- Major challenge: overwhelming Z + jets background
- ▶ a→hadrons reconstruction using sub-structure techniques

h→Za→II+jet

h→Za→II+jet

UNIVERSITY^{OF} BIRMINGHAM **33**

European Strategy for Particle Physics

2020 UPDATE OF THE EUROPEAN STRATEGY FOR PARTICLE PHYSICS

by the European Strategy Group

Major developments from the 2013 Strategy

A. Since the recommendation in the 2013 Strategy to proceed with the prog of upgrading the luminosity of the LHC, the HL-LHC project, was approved by the CERN Council in June 2016 and is proceeding according to plan. In parallel, the has reached a centre-of-mass energy of 13 TeV, exceeded the design luminosity, produced a wealth of remarkable physics results. Based on this performance, cou with the innovative experimental techniques developed at the LHC experiments a their planned detector upgrades, a significantly enhanced physics potential is exp with the HL-LHC. The required high-field superconducting Nb₃Sn magnets have been developed. The successful completion of the high-luminosity upgrade the machine and detectors should remain the focal point of European partic physics, together with continued innovation in experimental techniques. The full physics potential of the LHC and the HL-LHC, including the study of flat physics and the quark-gluon plasma, should be exploited.

B. The existence of non-zero neutrino masses is a compelling sign of new physics. The worldwide neutrino physics programme explores the full scope of th neutrino sector and commands strong support in Europe. Within that programme Neutrino Platform was established by CERN in response to the recommendation 2013 Strategy and has successfully acted as a hub for European neutrino resear accelerator-based projects outside Europe. *Europe, and CERN through the Ne Platform, should continue to support long baseline experiments in Japan a United States. In particular, they should continue to collaborate with the Un States and other international partners towards the successful implementation the Long-Baseline Neutrino Facility (LBNF) and the Deep Underground Neu Experiment (DUNE).*

Experiment (DUNE).

3

High-priority future initiatives

A. An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

 the particle physics community should ramp up its R&D effort focused on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors;

• Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.

The timely realisation of the electron-positron International Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate.

B. Innovative accelerator technology underpins the physics reach of high-energy and high-intensity colliders. It is also a powerful driver for many accelerator-based fields of science and industry. The technologies under consideration include high-field magnets, high-temperature superconductors, plasma wakefield acceleration and other high-gradient accelerating structures, bright muon beams, energy recovery linacs. *The European particle physics community must intensify accelerator R&D and sustain it with adequate resources. A roadmap should prioritise the technology, taking into account synergies with international partners and other communities such as photon and neutron sources, fusion energy and industry. Deliverables for this decade should be defined in a timely fashion and coordinated among CERN and national laboratories and institutes.*

LHC / HL-LHC Plan

UNIVERSITY^{OF} BIRMINGHAM **36**

Significant improvement in couplings studies

- Also detailed differential cross-section measurements
- Higgs self-coupling
 - ▶ 4σ significance against λ =0!
 - ▶ 0.1 ≤ κ_{λ} ≤ 2.3 at 95%CL

	Statistical-only		Statistical + Systematic		
	ATLAS	CMS	ATLAS	CMS	
$HH ightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95	
HH ightarrow b ar b au au	2.5	1.6	2.1	1.4	
$HH ightarrow b ar{b} \gamma \gamma$	2.1	1.8	2.0	1.8	
$HH \rightarrow b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56	
$HH \rightarrow b\bar{b}ZZ(4l)$	-	0.37	-	0.37	
combined	3.5	2.8	3.0	2.6	
	Combined		Combined 4.0		
4.5		5			

K. Nikolopoulos / Coimbra, 25 June 2020 / Higgs sector: a perspective

UNIVERSITY^{OF} BIRMINGHAM **38**

Project	Туре	CM Energy [TeV]	Int. Lumi. [a ⁻¹]	Oper. Time [y]	Power [MW]	Cost
ILC	ee	0.25	2	11	129 (upgr. 150-200)	4.8-5.3 GILCU + upgrade
		0.5	4	10	163 (204)	7.8 GILCU
		1.0			300	?
CLIC	ee	0.38	1	8	168	5.9 GCHF
		1.5	2.5	7	(370)	+5.1 GCHF
		3	5	8	(590)	+7.3 GCHF
CEPC	ee	0.091+0.16	16+2.6	2+1	149	5 G\$
		0.24	5.6	7	266	-
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF
		0.24	5	3	282	-
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF
LHeC	ер	0.060 e / 7 p	1	12	(+100)	1.75 GCHF
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)
HE-LHC	рр	27	20	20		7.2 GCHF
D. Schulte			Future colliders,	LHCP, May 2020		3

13/05/2019 UB

PER AD AZOIL ALTA

PER AD ADDIL ALTA

Additional Slides

Droiget	Ture						HL LHC		FCC hh				
Project	туре	[TeV]	[a ⁻¹]	[y]	[MW]	Cost	Cms	HL-LHC	HE-LHC	FCC-hh	SppC		
ILC	ee	0.25	2	11	129 (upgr.	4.8-5.3 GILCU +	Cms energy [TeV]] 14	27	100	75		
					150-200)	upgrade	Int. L., 2 det. [ab ⁻¹]. Operation Ivears	6	15	30			
		0.5	4	10	163 (204)	7.8 GILCU	Operation [years]	12	20	25			
		1.0			300	?	L [10 ³⁴ cm ⁻² s ⁻¹]	5	16	20-30	10		
	60	0.38	1	8	168	5 9 GCHE	Circumference	26.7	26.7	97.75	100		
		0.50	±	0	100		At fc dipole field [T]	8	16	16	12		
		1.5	2.5	7	(370)	+5.1 GCHF	Burnch diistt.[ns]	25	25	25	25		
		3	5	8	(590)	+7.3 GCHF	Backgr. events/bx	135	440	<1020			
CEPC	ee	0.091+0.16	16+2.6	2+1	149	5 G\$	Bunch length [cm]	7.5	7.5	8	7.55		
		0.24	5.6	7	266	-							
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF	HE-LHC is not cheap and has similar chall			llenges			
		0.24	5	3	282	-	than FCC-hh Physics case appears less interest		ting				
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF	Note: "low"-fie	ld NbTi r	nagnets	in FCC t	unnel		
LHeC	ер	0.060 e / 7 p	1	12	(+100)	1.75 GCHF	were looked at	were looked at, but cost saving is limited, a					
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)	energy compromised significantly (< 40 TeV						
HE-LHC	рр	27	20	20		7.2 GCHF							

D. Schulte

Future colliders, LHCP, May 2020

3

MET reconstruction in CMS

M. Dordevic, Univ. of Belgrade, LHCP2020

Higgs boson-charm quark coupling

Higgs boson-charm quark coupling

Higgs boson-charm quark coupling

- "Low level" taggers:
- * Track Impact Parameter
- * Secondary Vertices

c-jets

c jets

 $\sqrt{s} = 13$ TeV, tt

0.5

ATLAS Simulation Preliminary

c vs light

0.5

-0.5

41% efficiency

-0.5

- * JetFitter: b/c-et decay chain fit
- "High level" tagger obtained with BDT
- c-tagging: 41% c-jet eff; 4×b-jet & 20×light jet rejection
 b-tagging: 77% b-jet eff; 6×c-jet &134×light jet rejection

c vs light

0.5

-0.5

41% efficiency

-0.5

Density

 10^{-4}

 10^{-5}

b-jets

b jets

√s = 13 TeV.

0.5

bvs c

AS Simulation Preliminary

K. Nikolopoulos / Coimbra, 25 June 2020 / Higgs sector: a perspective

b vs c

Zh(→cc):Background Composition

K. Nikolopoulos / Coimbra, 25 June 2020 / Higgs sector: a perspective

■Background modelling & uncertainties validated with Z(Z/W) measurement
 ▶ Observed (expected) ZV production at 1.4σ (2.2σ)
 ▶ Measured ZV signal strength=0.6^{+0.5}-0.4

Zh(→cc):Fit Results

Zh(→cc):Results

150

200

250

Jet p_{τ} [GeV]

No evidence for $Zh(\rightarrow cc)$ production with current dataset PRL120 (2018) 211802

Limits on $\mathbf{ZH}(\rightarrow \mathbf{c}\overline{\mathbf{c}})$ production

50

100

SM: 2.55×10 ⁻² pb	95% CL _s upper limit on $\sigma (pp \to ZH) \times \mathcal{B} (H \to c\overline{c})$ [pb]					
▶110×SM (150 ⁺⁸⁰ -40)	Observed	Expected	Expected $+1\sigma$	Expected -1σ		
	2.7	3.9	6.0	2.8		

Source	$\sigma/\sigma_{\rm tot}$	>	.0.9⊏	
Statistical	49%	ertaini	0.8	ATLAS
Floating Z + jets normalization	31%		0.7	$\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ [light-flavour jets]
Systematic	87%	+ to ti	0.6	41% efficiency c-tagging working point
Flavor tagging	73%	Siency	0.5	
Background modeling	47%		0.0 0.4	
Lepton, jet and luminosity	28%	taggini taggini	0.7	
Signal modeling	28%	ata	0.0	
MC statistical	6%	Ó	0.2	_

The sum in quadrature of the individual components differs from the total uncertainty due to correlations between the components.

Single tagging working point constrains linear combination of $h \rightarrow cc/h \rightarrow bb$

 \blacktriangleright Analysis in conjunction with h→bb; account for cross-contamination

- For future key is controlling of systematic uncertainties
 - Phenomenological analysis indicates |κ_c|≤2.5-5.5 at 95%CL

2×3000 fb⁻¹ depending on the c-tagging scenario [Phys.Rev. D93 (2016) 013001]

▶ ATLAS HL-LHC projection for Z(II)H(cc) alone µ<6.3 [ATL-PHYS-PUB-2018-016]</p>

K. Nikolopoulos / Coimbra, 25 June 2020 / Higgs sector: a perspective

300

Exclusive Decays $h \rightarrow Q\gamma$

- **I** h→Q γ decays: clean probe for Higgs-quark+couplings for 1st/2nd generation quarks
 - Q is a vector meson or quarkonium state.
- **Two contributions:**
- $p+q+p_{\gamma}$ **Direct amplitude:** sensitive to Higgs boson-quark couplings
- Indirect amplitude: insensitive to Higgs boson-quark couplings; larger than direct
- **Destructive interference**

Similar decays of W[±] and Z bosons: also rich physics programme ▶ **Novel** precision studies of quantum chromo-dynamics ▶ W[±]/Z boson interactions with light quarks not well covered at earlier facilities Discovery potential for new physics processes

Exclusive Decays $h \rightarrow Q\gamma$

Substantial interest from theory community on branching ratio estimates and feasibility

Mode	Branching Fraction $[10^{-6}]$						
Method	NRQCD [1487]	LCDA LO [1486]	LCDA NLO [1489]				
${\rm Br}(h\to\rho\gamma)$	_	19.0 ± 1.5	16.8 ± 0.8				
${ m Br}(h o \omega \gamma)$	_	1.60 ± 0.17	1.48 ± 0.08				
${\rm Br}(h \to \phi \gamma)$	_	3.00 ± 0.13	2.31 ± 0.11				
${ m Br}(h o J/\psi \gamma)$	_	$2.79{}^{+0.16}_{-0.15}$	2.95 ± 0.17				
$\operatorname{Br}(h \to \Upsilon(1S) \gamma)$	$(0.61^{+1.74}_{-0.61})\cdot 10^{-3}$	_	$(4.61^{+1.76}_{-1.23}) \cdot 10^{-3}$				
${ m Br}(h o \Upsilon(2S) \gamma)$	$(2.02^{+1.86}_{-1.28}) \cdot 10^{-3}$	_	$(2.34^{+0.76}_{-1.00}) \cdot 10^{-3}$				
$\operatorname{Br}(h \to \Upsilon(3S) \gamma)$	$(2.44^{+1.75}_{-1.30}) \cdot 10^{-3}$	_	$(2.13^{+0.76}_{-1.13}) \cdot 10^{-3}$				

PRD90 (2014) 113010 PRL 114 (2015) 101802 JHEP 1508 (2015) 012

Not exhaustive; accurate at the time of YR4. e.g. Phys.Rev. D95 (2017) 054018 Phys.Rev. D96 (2017) 116014 Phys.Rev. D97 (2018) 016009

Decay mode	Branching ratio
$Z^0 o \pi^0 \gamma$	$(9.80^{+0.09}_{-0.14\mu} \pm 0.03_f \pm 0.61_{a_2} \pm 0.82_{a_4}) \cdot 10^{-12}$
$Z^0 \to \rho^0 \gamma$	$(4.19^{+0.04}_{-0.06\ \mu} \pm 0.16_f \pm 0.24_{a_2} \pm 0.37_{a_4}) \cdot 10^{-9}$
$Z^0\to\omega\gamma$	$(2.89^{+0.03}_{-0.05\mu} \pm 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4}) \cdot 10^{-8}$
$Z^0 \to \phi \gamma$	$\left(8.63^{+0.08}_{-0.13\mu} \pm 0.41_f \pm 0.55_{a_2} \pm 0.74_{a_4}\right) \cdot 10^{-9}$
$Z^0 \to J/\psi \gamma$	$(8.02^{+0.14}_{-0.15 \ \mu} \pm 0.20_{f \ -0.36 \ \sigma}) \cdot 10^{-8}$
$Z^0 \to \Upsilon(1S) \gamma$	$(5.39^{+0.10}_{-0.10\ \mu} \pm 0.08_{f\ -0.08\ \sigma}) \cdot 10^{-8}$
$Z^0 \to \Upsilon(4S) \gamma$	$(1.22^{+0.02}_{-0.02\mu} \pm 0.13_{f-0.02\sigma}) \cdot 10^{-8}$
$Z^0 \to \Upsilon(nS) \gamma$	$(9.96^{+0.18}_{-0.19\mu} \pm 0.09_{f-0.15\sigma}) \cdot 10^{-8}$

JHEP 1504 (2015) 101

$h/Z \rightarrow \psi(mS)\gamma$ (m=1,2) and $h/Z \rightarrow Y(nS)\gamma$ (n=1,2,3)

Run 1: Non-universal quark-Higgs boson coupling
New results with Run 2 data, including also ψ'

[Phys.Rev.Lett. 114 (2015) 12, 121801, Phys.Lett. B753 (2016) 341, Phys.Rev. D92 (2015) 033016, JHEP 1508 (2015) 012]

$h/Z \rightarrow \psi(mS)_{Y \rightarrow J/(y} = 1,2)$ and $h/Z \rightarrow Y_{H \rightarrow J/(y} = 1,2)$ (n=1₂₉,235,3b)(13TeV)

h/Z→Qγ: Background

- Inclusive quarkonium with jet "seen" as γ
 - combinatoric background: small contribution
 - ▷ contribution from Q+γ production
- Non-parametric data-driven background model
- Obtain loose sample of candidates
- Model kinematic and isolation distributions
- Generate "pseudo"-background events
- Apply selection to "pseudo"-candidates
- CMS: polynomials for background model

Peaking backgrounds

- \blacktriangleright Z \rightarrow µµ γ _{FSR} from side-band fit
- ► $H \rightarrow \mu \mu \gamma_{FSR}$ (small contribution wrt other backgrounds)

h/Z→Qy: Results

h/Z→Qγ: Results

	AT	LAS	CMS		
Branching fraction limit $(95\% \text{ CL})$	Observed	Expected	Observed	Expected	
$\mathcal{B}\left(H \to J/\psi \gamma\right) \left[\ 10^{-4} \ \right]$	3.5	$3.0^{+1.4}_{-0.8}$	7.6	$5.2^{+2.4}_{-1.6}$	
$\mathcal{B}\left(H \to \psi\left(2S\right)\gamma\right)\left[\;10^{-4}\;\right]$	19.8	$15.6^{+7.7}_{-4.4}$	-	-	
$\mathcal{B}\left(Z \to J/\psi\gamma\right)\left[\ 10^{-6}\ \right]$	2.3	$1.1_{-0.3}^{+0.5}$	1.4	$1.6^{+0.7}_{-0.5}$	
$\mathcal{B}\left(Z \to \psi\left(2S\right)\gamma\right)\left[\;10^{-6}\;\right]$	4.5	$6.0^{+2.7}_{-1.7}$	-	-	

Branching fraction limit $(95\% \text{ CL})$	Observed	Expected
$\mathcal{B}\left(H \to \Upsilon(1S) \gamma\right) \left[\ 10^{-4} \ \right]$	4.9	$5.0^{+2.4}_{-1.4}$
$\mathcal{B}\left(H \to \Upsilon(2S) \gamma\right) \left[\ 10^{-4} \ \right]$	5.9	$6.2^{+3.0}_{-1.7}$
$\mathcal{B}\left(H \to \Upsilon(3S) \gamma\right) \left[\ 10^{-4} \ \right]$	5.7	$5.0^{+2.5}_{-1.4}$
$\mathcal{B}\left(Z \to \Upsilon(1S) \gamma\right) \left[\ 10^{-6} \ \right]$	2.8	$2.8^{+1.2}_{-0.8}$
$\mathcal{B}\left(Z \to \Upsilon(2S) \gamma\right) \left[\ 10^{-6} \ \right]$	1.7	$3.8^{+1.6}_{-1.1}$
$\mathcal{B}\left(Z \to \Upsilon(3S) \gamma\right) \left[\ 10^{-6} \ \right]$	4.8	$3.0^{+1.3}_{-0.8}$

Substantial improvement with respect to Run 1

- ▶ Expected limit improved by factor 3-4 for Higgs and by 60-80% for Z
- Current limits imply: -165<κ_c<200</p>
 - Predictions on the direct amplitude have been revised downwards as a function of time

c.f Phys.Rev. D96 (2017) 116014 \rightarrow PRD90 (2014) 113010

$h/Z \rightarrow \phi \gamma / \rho \gamma$: Analysis Strategy

- **First search for h/Z** $\rightarrow \varphi \gamma$ with 2.7 fb⁻¹@13 TeV from 2015 [Phys. Rev. Lett. 117, 111802]
- **New results** with up to 35.6/fb, added h/Z $\rightarrow \rho\gamma$ [JHEP 1807 (2018) 127]
- Distinct experimental signature
 - Collimated high-pT isolated track pair recoils vs high-pT isolated photon
- Meson decays:
 - **φ**→**K⁺K**⁻, BR=49%
 - **⊳ ρ**→**π**⁺**π**⁻, BR~100%

Small opening angles between decay products

- ▶ Particularly for $\phi \rightarrow K^+K^-$
- Tracking in dense environments

Small angular separation

Z→µµ candidate with 25 reconstructed vertices from the 2012 run. Only good quality tracks with pT>0.4GeV are shown

$h/Z \rightarrow \phi \gamma / \rho \gamma$: Analysis Strategy

$h/Z \rightarrow \phi \gamma / \rho \gamma$: Trigger Strategy

Two-level trigger system Level-1: Hardware-based HLT: Software-based

Method Exampled by dedicated trigger items

Modified τ-lepton algorithms
 Activated: 9/2015 (φγ) and 5/2016 (ργ)
 Efficiency ~80% w.r.t offline selection
 Level-1: Isolated EM object
 Lowest pT unprescaled EM object
 HLT: Collimated/isolated high-pT track pair recoiling against high-pT photon
 Isolated di-track (leading p_T>15 GeV) consistent with m_{Meson}
 Photon (p_{TY}>35 GeV)

Event Selection

Background model/validation

Results

UNIVERSITY^{OF} BIRMINGHAM 66

▶ h→ργ < 45.5 fb

HL-LHC and beyond

- - Small branching ratio, few events expected
 - ► At SM sensitivity $h \rightarrow \mu \mu \gamma_{FSR}$ contribution ~3×h→J/ $\psi \gamma$ and (Z $\rightarrow \mu \mu \gamma_{FSR}$ for Z)
- Sensitive to "anomalous" $h \rightarrow \gamma \gamma$; use ratio
- Future colliders: leap in Higgs production rate
 - ▶ FCC-hh 100 TeV 20/ab: 𝒪(15G) Higgs bosons

UNIVERSITY^{OF} BIRMINGHAM **67**

Associated production

 For HL-LHC pp→hc could be used
 with high purity Higgs boson decays
 SM cross section σ(pp→hc)~166 fb
 Main backgrounds are
 pp→hg (σ~12pb), pp→hcc (~55fb),
 pp→hb (σ~200fb)
 Phenomenological study suggests:
 2×3000 fb⁻¹ |κ_c|≤2 at 95%CL Phys.Rev.Lett. 115 (2015) 211801

	$pp \rightarrow ch(\rightarrow \gamma \gamma) \ 3000 \ fb^{-1}$										
κ _c	0	0.25	5 0.5	6 0.7	5 1	l 1.	.25	1.5	1.75	2	
S	874	877	885	5 89	9 91	17 9	41 9	973	1008	1052	
κ _c	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	
S	1097	1148	1206	1276	1350	1424	1504	1590	1683	1786	

 $[pT_j > 20 \text{ GeV}, |\eta_j| < 5, DR(j_1, j_2) > 0.4, \epsilon_c = 0.4, \epsilon_{g \to c} = 1\%, \epsilon_{b \to c} = 30\%]$

K. Nikolopoulos / Coimbra, 25 June 2020 / Higgs sector: a perspective

UNIVERSITY^{of} BIRMINGHAM 69
Kinematic distributions

- Derive constraints on Higgs boson-quark couplings through the Higgs boson kinematic distributions
- For example pT_h or y_h
- Phenomenological study suggests that couplings to upand down-quarks could be constrained to <0.4 of the bquark Yukawa at HL-LHC.

PRL 118 (2017) 121801, JHEP 1612 (2016) 045, arXiv:1608.04376

- Inputs: h→γγ, h→ZZ→4I
 13 TeV and 35.9 fb⁻¹
 boosted h→bb sensitivity pTH>350 GeV not used
 MADGRAPH5 aMC@NLO
 ggF reweighted to NNLOPS
 PT spectra w/ light quark effects from PRL 118 (2017) 121801
 Limits on κ_c at 68% CL:
 - Observed: (-18.0,22.9)
 - Expected: (- 15.7,19.3)

Searching for light DM: Quenching Factor

Quenching factor: fraction of ion kinetic energy dissipated in a medium in the form of ionization electrons and excitation of the atomic and quasi-molecular states.

Direct detection experiment using light gases as target (H, He, Ne)

- Better projectile-target kinematic match
- Favourable quenching factor

The ATLAS detector

The Large Hadron Collider

ak fit

Common coupling scaling for all Fermions (κ_F) and for all Bosons (k_V); no BSM contributions

	20	ion	
ngs determination 20	rmination	hents of the M fermions	
Higgs couplings determination	measurements of the gs to the SM fermions	cally on the	
igns of new physics, precision measurements of the portance. Key are the couplings to the SM fermions	quadratically on the	models [57– nomenolog-	
early on the fermion mass and quadratically on the	enchmark models [57– s to a phenomenolog-	pular model ants κ_V and cit assump-	
ATLAS and CMS in various benchmark models [57– h, where higher-order modifiers to a phenomenolog- ne SM Higgs boson couplings. In one popular model ed in the same way, scaled by the constants κ_V and	the constants κ_V and β the explicit assump- γ ps in the production ϵ contributions to its	production itions to its	W
M. This benchmark model uses the explicit assump- g., there are no additional loops in the production Higgs decays and undetectable contributions to its	th measurements has the electroweak preci-	weak preci- self through rrections to	
n data and Higgs signal-strength measurements has ne main effect of this model on the electroweak preci- upling to gauge bosons, and manifests itself through rees of freedom of these bosons. The corrections to	anifests itself through s. The corrections to meters [66], λ (1)	$\frac{1}{\frac{2}{V_V}}, \qquad (5)$	S
ssed in terms of the S, T parameters [66], 3 (1 2) Λ^2	$= \frac{1}{\sqrt{ 1 - \kappa_V^2 }}, \qquad (5)$	itarise lon- viates from	
$\frac{1}{1-\kappa_V^2} \ln \frac{1}{M_H^2}, \Lambda = \frac{1}{\sqrt{\mathbf{E} \mathbf{X} \mathbf{P} \mathbf{e}}} \text{rimental inf}$	ormation on Yukawa coup acterize the observed Hig	blings $\underset{\text{ninator }\lambda}{\overset{\text{sons givit: fal to}}{\underset{\text{sonstor }\lambda}{\overset{\text{sons givit: fal to}}{\underset{\text{sonstor }\lambda}{\overset{\text{sons fal to}}{\underset{\text{sonstor }\lambda}}}$	
in this model. Note that the less κ_V deviates from	re the nominator λ is	the allowed	- UNIVERSITY ^{of}
t BSM models with additional Higgs bosons giving		ine covers a	BIRMINGHAM 74

Zh(→cc):Event Selection

■First search for exclusive Zh→llcc decays, I=e, µ
Main backgrounds: Z+jets, Z(W/Z), ttbar

$Z \rightarrow \ell^+ \ell^-$ Selection

- Trigger with lowest available p_T single electron or muon triggers
- Exactly two same flavour reconstructed leptons (e or μ)
- Both leptons p_T > 7 GeV and at least one with p_T > 27 GeV
- Require opposite charges (dimuons only)
- $81 < m_{\ell\ell} < 101 \ {
 m GeV}$
- $p_{\rm T}^Z > 75 \,\,{\rm GeV}$

$H \rightarrow c \bar{c}$ Selection

- Consider anti-k_T R = 0.4 calorimeter jets with |η| < 2.5 and p_T > 20 GeV
- At least two jets with leading jet
 *p*_T > 45 GeV
- Form $H \rightarrow c\bar{c}$ candidate from the two highest p_T jets in an event
- At least one *c*-tagged jet from $H \rightarrow c\bar{c}$ candidate
- Dijet angular separation ΔR_{jj} requirement which varies with p_T^Z

- Split events into 4 categories
 - $h \rightarrow cc$ candidates with 1 or 2 c-tags
 - ▷ p_{TZ} above/below 150 GeV

Exclusive Decays $h \rightarrow Q\gamma$

Substantial interest from theory community on branching ratio estimates and feasibility

Mode	Branching Fraction $[10^{-6}]$			
Method	NRQCD [1487]	LCDA LO [1486]	LCDA NLO [1489]	
${\rm Br}(h\to\rho\gamma)$	_	19.0 ± 1.5	16.8 ± 0.8	
${\rm Br}(h\to\omega\gamma)$	_	1.60 ± 0.17	1.48 ± 0.08	
${\rm Br}(h \to \phi \gamma)$	_	3.00 ± 0.13	2.31 ± 0.11	
${ m Br}(h o J/\psi \gamma)$	_	$2.79{}^{+0.16}_{-0.15}$	2.95 ± 0.17	
$\operatorname{Br}(h \to \Upsilon(1S) \gamma)$	$(0.61^{+1.74}_{-0.61}) \cdot 10^{-3}$	_	$(4.61^{+1.76}_{-1.23}) \cdot 10^{-3}$	
${ m Br}(h o \Upsilon(2S) \gamma)$	$(2.02^{+1.86}_{-1.28}) \cdot 10^{-3}$	_	$(2.34 {}^{+ 0.76}_{- 1.00}) \cdot 10^{-3}$	
${\rm Br}(h o \Upsilon(3S) \gamma)$	$(2.44^{+1.75}_{-1.30}) \cdot 10^{-3}$	_	$(2.13^{+0.76}_{-1.13}) \cdot 10^{-3}$	

PRD90 (2014) 113010 PRL 114 (2015) 101802 JHEP 1508 (2015) 012

Not exhaustive; accurate at the time of YR4. e.g. Phys.Rev. D95 (2017) 054018 Phys.Rev. D96 (2017) 116014 Phys.Rev. D97 (2018) 016009

Decay mode	Branching ratio
$Z^0 o \pi^0 \gamma$	$(9.80^{+0.09}_{-0.14\mu} \pm 0.03_f \pm 0.61_{a_2} \pm 0.82_{a_4}) \cdot 10^{-12}$
$Z^0 \to \rho^0 \gamma$	$(4.19^{+0.04}_{-0.06\ \mu} \pm 0.16_f \pm 0.24_{a_2} \pm 0.37_{a_4}) \cdot 10^{-9}$
$Z^0\to\omega\gamma$	$(2.89^{+0.03}_{-0.05\mu} \pm 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4}) \cdot 10^{-8}$
$Z^0 \to \phi \gamma$	$\left(8.63^{+0.08}_{-0.13\mu} \pm 0.41_f \pm 0.55_{a_2} \pm 0.74_{a_4}\right) \cdot 10^{-9}$
$Z^0 \to J/\psi \gamma$	$(8.02^{+0.14}_{-0.15 \ \mu} \pm 0.20_{f \ -0.36 \ \sigma}) \cdot 10^{-8}$
$Z^0 \to \Upsilon(1S) \gamma$	$(5.39^{+0.10}_{-0.10\ \mu} \pm 0.08_{f\ -0.08\ \sigma}) \cdot 10^{-8}$
$Z^0 \to \Upsilon(4S) \gamma$	$(1.22^{+0.02}_{-0.02\mu} \pm 0.13_{f-0.02\sigma}) \cdot 10^{-8}$
$Z^0 \to \Upsilon(nS) \gamma$	$(9.96^{+0.18}_{-0.19\mu} \pm 0.09_{f-0.15\sigma}) \cdot 10^{-8}$

K. Nikolopoulos / Coimbra, 25 June 2020 / Higgs sector: a perspective

JHEP 1504 (2015) 101

Kinematic Distributions

Exclusive Decays: Signal uncertainties

Source	Signal Yield		
of	Uncertainty [%]		
Uncertainty	ϕ/ ho	ψ/Υ	
H Signal Modelling	6.3	7.2	
Z Signal Modelling	2.9	5.7	
Integrated Luminosity	3.4	2.1	
Photon ID Efficiency	2.5	1.4	
Trigger Efficiency	2.0	2.0	
Tracking Efficiency	6.0	—	
Muon ID Efficiency	_	2.8	

Exclusive Decays $h \rightarrow Q\gamma$

- **I** h→Qy decays: clean probe for Higgs-quark+couplings for $1^{st}/2^{nd}$ generation quarks
 - Q is a vector meson or quarkonium state.
- **Two contributions:**
- $p+q+p_{\gamma}$ **Direct amplitude:** sensitive to Higgs boson-quark couplings
- Indirect amplitude: insensitive to Higgs boson-quark couplings; larger than direct
- **Destructive interference**

Similar decays of W[±] and Z bosons: also rich physics programme

- Novel precision studies of quantum chromo-dynamics
- ▶ W[±]/Z boson interactions with light quarks not well covered at earlier facilities
- Discovery potential for new physics processes K. Nikolopoulos / Coimbra, 25 June 2020 / Higgs sector: a perspective

$h/Z \rightarrow \psi(mS)\gamma$ (m=1,2) and $h/Z \rightarrow Y(nS)\gamma$ (n=1,2,3)

h/Z→Qy: Results

First search for h/Z $\rightarrow \phi \gamma$ with 2.7 fb⁻¹@13 TeV from 2015 [Phys. Rev. Lett. 117, 111802]

- **New results** with up to 35.6/fb, added h/Z $\rightarrow \rho\gamma$ [JHEP 1807 (2018) 127]
- Distinct experimental signature
 - Collimated high-p_T isolated track pair recoils vs high-p_T isolated photon
- Meson decays:
 - **φ**→**K⁺K**⁻, BR=49%
 - **⊳ ρ**→**π**⁺**π**⁻, BR~100%

Small opening angles between decay products

- ▶ Particularly for $\phi \rightarrow K^+K^-$
- Tracking in dense environments

h/Z→φγ/ργ

Small angular separation

$h/Z \rightarrow \phi \gamma / \rho \gamma$: Results

JHEP 1807 (2018) 127

