Neutrinoless Double-Beta Decay Sensitivity in Hybrid Detectors \rightarrow THEIA

+++ DBD 2022 +++ Lisbon, June 7 +++ Michael Wurm (Mainz) +++

Hybrid Cherenkov/Scintillation Detectors

Novel target media: Water-based/Slow Scintillator

Novel light sensors: fast PMTs, LAPPDs, dichroicons

→ Enhanced sensitivity to broad physics program

Michael Wurm (Mainz)

Hybrid Detectors

Hybrid detectors for **ββ-decay**

A large-volume hybrid detector offers

- \rightarrow like regular LS, large $\beta\beta$ -isotope mass can be dissolved in the detector liquid
- → Scintillation: good energy resolution, pulse shape discrimination
- → Cherenkov effect: (solar neutrino) background discrimination and number of final state particles
- → C/S ratio: particle ID

How to extract the Cherenkov signal from scintillation detectors?

- ightarrow enhance liquid transparency and/or
- ightarrow slow down scintillation emission
- → Cherenkov/scintillation (C/S) separation

Water-based liquid scintillators (WbLS)

Minfang Yeh, BNL

 \rightarrow for ββ searches, large (or pure) organic phase preferable \rightarrow water content offers additional options for metal loading

\rightarrow how to resolve the Cherenkov/scintillation signals?

Timing

#

UV/blue scintillation vs. blue/green Cherenkov → wavelength-sensitivity

increased PMT hit density under Cherenkov angle → sufficient granularity

Scintons

chertons

Scintons

Chertons

→ how to resolve the Cherenkov/scintillation signals?

Timing

"instantaneous chertons"
vs. delayed "scintons"
→ ns resolution or better

Spectrum

UV/blue scintillation vs. blue/green Cherenkov → wavelength-sensitivity

Angular distribution

increased PMT hit density under Cherenkov angle → sufficient granularity

Michael Wurm (Mainz)

\rightarrow how to resolve the Cherenkov/scintillation signals?

Timing

"instantaneous chertons" vs. delayed "scintons" → ns resolution or better

Large Area Picosecond Photon Detectors

- Area: 20-by-20 cm²
- Amplification of p.e. by two MCP layers
- Flat geometry: ultrafast timing ~65ps
- Strip readout: spatial resolution ~1cm
- Commercial production by Incom, Ltd.

Michael Wurm (Mainz)

Scintons

Chertons

Michael Wurm (Mainz)

Better suited: Slow Scintillators

Starting point: LAB + 2g/l PPO $\rightarrow \tau^{\sim}$ 5ns

 \rightarrow can be prolonged to facilitate C/S separation

Options

- reduce primary fluor (i.e. PPO) content
 longer emission but lower light yield
 [Z. Guo et al., arXiv:1708.07781]
- slow fluors selected for long emission times, e.g. di-phenyl-antracene/hexatriene [Steve Biller et al., arXiv:2001.10825]
- use co-solvent to slow light transfer to fluor [Hans Steiger]

Consequences

- C/S separation can rely on regular PMTs
- high scintillation light yields can be maintained
- quality of vertex reconstruction (and with this indirectly C/S separation) suffers
 - \rightarrow effects have to be balanced

ββ Development Path for Hybrid Detectors

Future Large-Scale Hybrid Detectors

THEIA : Broad Physics Program

Neutrinoless double beta decay

S.M. Usman, et al., Scientific Rep. 5, 13945 (2015)

Supernova burst neutrinos & DSNB

Nucleon decay

and more ...

slide by Björn Wonsak

THEIA : ββ-Phase

Default Scenario

KamLAND-Zen style setup with central vessel, separating high light yield (slow-ish?) scintillator with ββ-isotope from surrounding veto volume

Basic assumptions

- balloon/acrylic vessel with 8m radius
- LAB-based scintillator with 2g/l PPO (τ~5ns)
- isotope loading

 \circ 3% enriched xenon (89.5% in ¹³⁶Xe, 49.5t)

• 5% natural tellurium (34.1% in ¹³⁰Te, 31.4t)

- outside: WbLS with 10% organic fraction
- overburden of SURF: 4300 mwe
- PMT coverage: 90%
 - → Light Yield: ~1200 p.e./MeV
 - \rightarrow energy resolution: ~3% at 1 MeV

[arXiv:1911.03501]

THEIA : ββ Background Levels

Background assumptions

- PID or directionality used to remove 50% of solar ⁸B neutrino events
- cosmogenic ¹⁰C reduced by 92.5% with threefold coincidence tagging (Bx)
- activation of ββ isotope by solar v's CC but no cosmogenic activiation
- **2v2β:** asymmetric ROI of [-0.5σ;2σ]
- LS radiopurity like Borexino Phase I
- Bi-Po tagging with 99.9% efficiency (to remove ²¹⁴Bi/²⁰⁸TI)
- vessel radiopurity like KamLAND, fiducial volume with R<7m</p>

	Expected event rates [yr-1]				
Source	total	ROI-Te	ROI-Xe		
Solar ⁸ B	500	2.5	2.5		
Cosmogenic ¹⁰ C	2950	13.8	13.8		
Te: ¹³⁰ Ι 2ν2β	155 1.2e8	8.3 8.0			
Xe: ¹³⁶ Cs 2v2β	478 7.1e7		0.06 3.8		
LS: 1e-17 g/g U 1e-17 g/g Th	7300 870	0.4 -	0.4 -		
Nylon Vessel 1.1e-12 g/g U 1.6e-12 g/g Th	1.2e5 2.1e4	2.4 0.03	2.7 0.01		
Total BG-Index [(t·yr)-1]		1.1	0.5		

[arXiv:1911.03501

THEIA : Expected ββ Endpoint Spectra

sensitivity based on counting analysis (90% C.L.)

$$\begin{array}{ll} {\bf Te}: \ T_{1/2}^{0\nu\beta\beta}>1.1\times10^{28} \ {\rm y}, \ m_{\beta\beta}<6.3 \ {\rm meV} \\ {\bf Xe}: \ T_{1/2}^{0\nu\beta\beta}>2.0\times10^{28} \ {\rm y}, \ m_{\beta\beta}<5.6 \ {\rm meV} \end{array}$$

[arXiv:1911.03501

Michael Wurm (Mainz)

Added Value of Hybrid Detectors

How to improve beyond the baseline scenario?

Goal: Background discrimination surpassing standard LS detectors

→ directional reconstruction to remove solar ⁸B v background

- → two-ring event topology to provide clear signature of 2β⁻ decays (discovery)
- \rightarrow Cherenkov/scintillation ratio to distinguish e⁻- γ -e⁺-2e⁺ events

courtesy of Ben Land

i) solar ⁸B Directional Cut

resulting 0v2 β sensitivity ightarrow PMT $\sigma_{
m tt}{\leq}1$ ns!

[arXiv:2007.14999]

cf. Recent SNO⁺ Result

LAB + 0.6g/l PPO 40% with cos**0**>0.8

i) Further Improvement with Slow LS?

- study assumes slow LS based on LAB + 4 g/l acenapthene (+ 1mg/l Bis-MSB)
 decay time of 45 ns
- different configurations studied, good performance found for large coverage (77%) and/or fast PMTs (1ns)
- → for low energies, slow LS probably better choice than fast scintillators

detector configurations studied:

	% Photocathode	\mathbf{PMT}	bis-MSB	Resulting
Acronym	coverage	TTS (ns)	(mg/L)	pe/MeV
77_FAST_1	77	1	1	1000
77_SLOW_1	77	3.7	1	1000
77_SLOW_O	77	3.7	0	500
30_FAST_1	30	1	1	400
30_SLOW_1	30	3.7	1	400
30_FAST_0	30	1	0	200
30_SLOW_O	30	3.7	0	200

ii) Event Topology with C/S signal

Is there a chance to detect double Cherenkov cone signature from $2\beta^2$ decays?

ii) Study on 2β⁻/⁸B Recoil Discrimination

- restrict analysis to early hits
- search for level of asymmetry in the hit pattern
 →analysis based on spherical harmonics

[arXiv:1609.09865]

ii) Discrimination with Spherical Harmonics

[arXiv:1609.09865]

ii) Discrimination with Spherical Harmonics

[arXiv:1609.09865]

ii) Discrimination with Spherical Harmonics

Michael Wurm (Mainz)

Hybrid Detectors

iii) ne[±] Discrimination based on C/S ratio

basic idea: low-energy electrons create low/no Chertons
 → particles generating many secondary electrons (γ's,e⁺) feature a reduced Cherenkov/scintillation C/S ratio!

electron-like: multi-MeV electrons will generate most Cherenkov light

2β-**like:** somewhat reduced Cherton yield due to split of energy on two electrons

gamma-like: several Compton electrons with on average lower Cherton yield

positron-like: two 511 keV γ 's create LE electrons that generate almost no Chertons

2β⁺-like: four 511 keV γ's suppress Cherton emission even more.

iii) Discrimination based on Cherton counting

300

250

200

100

50

0

0

C photons 150 overall light yield: 1500 pe/MeV ~5% of photons are Chertons

C+S photons

2v2B¹⁰⁰⁰

¹³⁶Xe : 2β⁻ decays

2000

ordered by C/S

iii) Discrimination based on Cherton counting

300

overall light yield: 1500 pe/MeV ~5% of photons are Chertons ~30% can be identified → counting Chertons vs. all photons!

Onubb

Detected photons: Xe-136

Michael Wurm (Mainz)

Searches in multi-kt Detectors

i.e. THEIA, potentially JUNO others

- for 2β⁻ searches (Xe, Te), C/S ratio very effective to discriminate LS cosmogenics (¹⁰C, ¹¹C)
 → works for all endpoint energies
- for high loading with natural Xe, simultaneous search for 2β⁻/2β⁺ possible
- searches for 0v2β⁺ decay potentially attractive because 2v2β⁺ is as well very suppressed
 → less of an issue with BG

Searches in multi-kt Detectors

i.e. THEIA, potentially JUNO others

- for 2β⁻ searches (Xe, Te), C/S ratio very effective to discriminate LS cosmogenics (¹⁰C, ¹¹C)
 → works for all endpoint energies
- for high loading with natural Xe, simultaneous search for 2β⁻/2β⁺ possible
- searches for 0v2β⁺ decay potentially attractive because 2v2β⁺ is as well very suppressed
 → spectral overlap is less of an issue

¹²⁴Xe : EC $\beta^+/2\beta^+$ decays

Dedicated 2β⁺ Search for Mid-Scale Setups?

hybrid detectors especially sensitive to $2\beta^+$ \rightarrow current $2\beta^+$ limits are $\mathcal{O}(10^{22})$ yrs

e.g. test measurement with JUNO pre-detector OSIRIS ("CTF") looking for EC β ⁺/2 β ⁺ of ⁷⁸Kr

- spectral endpoint at 2.85 MeV (visible)
- 20 tons of slow LS with 2% ^{nat}Kr \rightarrow 400 kg
- Iow natural abundance: 0.4% → ⁷⁸Kr: 1.6 kg
- at 10²² yrs: ~10³ events per year

 $\rightarrow O(10^{25})$ yrs for 1 yr of BG-free measuring

- [if enriched to 94% $\rightarrow O(10^{28})$ yrs]
- → without enrichment, relatively cheap method to observe 2v2β⁺ and significantly enhance life time limits on 0v2β⁺ decay for several isotopes:

⁷⁸Kr, ¹²⁴Xe, ¹⁰⁶Cd, others?

 \rightarrow how helpful for 2 β /matrix element predictions?

OSIRIS Detector upgrade for 2β

compared to current setup

- additional external shielding (40cm concrete)
- PMTs rearranged (larger distance) & equipped with light cones
 → light yield >10³ pe/MeV
- spherical (double) balloon to reduce internal γ background
- doubles as solar pp-v detector

Conclusions

hybrid Cherenkov/scintillation detectors offer a large dynamic range, enhanced event reconstruction and new background discrimination capabilities

for 2β searches, hybrid detectors offers several possibilities to enhance sensitivity compared to "conventional" scintillator searches

- directional discrimination of 8B neutrinos
- identification of 2β decay topologies based on Cherenkov photon distribution
- ne[±] discrimination based on C/S ratio

Backup Slides

Light propagation in organic scintillators

How to improve the (relative) Cherenkov photoelectron yield?

\rightarrow reduce fluor concentration

- impacts scintillation yield
- slows down scintillation (good! → see next slide)

→ reduce Rayleigh scattering

new transparent solvent,e.g. LAB (~20m)

and/or

dilution of solvent:
 Water-based scintillators
 Oil-diluted LS (LSND ...)

SERAPPIS 1D spectra

Kr-78 enriched

Receipe for WbLS

Challenges

- water does not scintillate
- organic fluorophores do not dissolve in water

How to overcome this?

- start from usual organic scintillator, i.e. solvent (e.g. LAB) + small concentration of fluorophore (e.g. PPO, several gram/liter)
- add a surfactant (tensid) to create the interface between organic and water phase
- dissolve small droplets (mycels) of organic LS in the water phase

Properties

- very transparent (water)
- Imited by Rayleigh scattering of mycels (size!)
- scintillation! (linear with organic fraction)
- fast timing (LAB → PPO transfer times)

Michael Wurm (Mainz)

Hybrid Detectors

German involvement: R&D on WbLS

WbLS Development at TUM

- → systematic study of WbLS composition and properties
- → new WbLS components: surfactants (Triton-X vs. LAS), solvents (benzene, dioxane)
- → in Mainz: oil-diluted organic LS (heptane, dodecane, hexadecane)

WbLS Light Yield in Mainz

- → forward-scattered electrons produce Chertons and scintons
- → rear PMT sees pure scinton signal, front PMTs (tts 300ps) separate C/S signals

WbLS Cherton/Scinton Test Cell in Mainz

- → C/S discrimination and reco with sub-ns photosensors
- → light propagation in WbLS over 10-20 cm
- Cylindrical tank: 10-15l
- Air gap for ring formation
- Changeable photosensors: LAPPDs, SiPMs ...
- fast (<1ns) PMT rear array for scinton detection

German involvement: Photosensors

Idea: SiPM array with active light guides

- SiPM arrays for sub-nanosec timing
- increased granularity compared to PMTs
- equip SiPMs with cone-shaped scintillators to enhance light collection
 - \rightarrow reduce costs
 - \rightarrow reduce dark noise

Currently: Production of test array in TÜ

- 2x2 array with SiPM mounted on small piggyback boards
- Active light guides:
 3 plastic scintillators from Mainz
 1 reference channel without guide
- Design of large mother board on-going:

 Preamplifiers and other electronics
 Adapters for piggyback boards

Planned: Design of readout electronics for 64-channel array with FZ Jülich/ZEA-2

Fast light detectors: LAPPDs

For fast scintillators (e.g. WbLS), sub-ns time resolution will be crucial

Large-Area Picosecond Photo-Detectors:

- flat, large area (20cm x 20cm) detectors
- standard photocathode, MCP-based amplification
- time resolution: ~60 ps
- spatial resolution: <1cm</p>
- Manufactured by US company, Incom Inc.

Schematic of LAPPD

ANNIE Experiment

Accelerator Neutrino Nucleus Interaction Experiment

27-ton (Gd-loaded) Water Cherenkov Detector running in the **Fermilab BNB neutrino beam**

- measurement of GeV neutrino differential cross-sections and neutron multiplicity
- physics data taking started in early 2021
- R&D program for new technologies
 → Gd-water → LAPPDs → WbLS

ANNIE Detector Layout

ANNIE: First LAPPD installed

- major milestone: 1st LAPPD installed in March 2022, detected first light from neutrinos
- currently: *in-situ* timing calibration
- 4+ LAPPDs more to be installed for next beam year

ANNIE+SANDI: WbLS test deployment

\rightarrow next step: SANDI

acrylic vessel with 365 kg of WbLS submerged in ANNIE

- resolve scintillation light from hadronic recoils, improve neutrino energy determination
- higher light output for neutron captures on gadolinium
 → improved neutron detection efficiency & vertex reco
- first attempt of C/S separation for neutrinos with LAPPDs
- → test WbLS performance for future use in long-baseline exp.s!

water: 14.4%

water

-0.2

→WbLS: 10.6%

-0.4

Preparations are on-going

3' x 3' vessel already on-site at Fermilab

100

80

60

40

20

-0.6

(Gd-loaded) WbLS to be produced at BNL (M. Yeh)

ANNIE vs. SANDI WbLS vessel

MC with idealized reco and machine learning

Michael Wurm (Mainz)

0.2

RMS= 0.144

0.4

0.6

µ= -0.029

WbLS

RMS= 0.106

µ=-0.016

0.0

ΔE/E

wbls true

water

EOS: WbLS performance demonstrator

Detector Layout

- stand-alone hybrid detector
- target mass: 4 ton (water, WbLS, LS)
- 200 fast 8" PMTs (tts of 900 ps) with CAEN V1730 readout
- plus deployment of 4 dichroicons for spectral sorting
- → start in 2023/24 (UC Berkeley)

4-ton WbLS demonstrator detector for MeV energy regime

Demonstrator program

- event reconstruction using hybrid Cherenkov/scintillation signatures
- validate models to support large-scale detector performance predictions

closely connected to BNL effort on a 30-ton tank for demonstration of WbLS production, transparency and stability

Jinping 1-Ton Prototype

Detector Layout

- acrylic sphere containing 1t of slow scintillator
- fast 8" PMTs for light read-out (new fast MCP-PMT being developed, σ_{tts}=1.5ns)
- detector running since 2018

Project program

- event reconstruction in slow scintillator
- background levels in Jinping laboratory and radiopurity of detector materials
- \rightarrow demonstrator for future 500t detector

liquid handling system @ Jinping

8" PMT Acrylic Sphere Slow LS Water

Michael Wurm (Mainz)

P0533

P0354

P0413

P0478

Directionality in present-day scintillator detectors

BOREXINO

- new analysis technique tested in the spectral region of sub-MeV solar ⁷Be neutrinos
- CID: use *integrated* angular distributions of early PMT hits relative to direction of the Sun
- → observation of significant (>6σ!) angular excess caused by Cherenkov photons
- \rightarrow rate: 1.13^{+0.22}_{-0.25} of (oscillated) SSM prediction

first directional detection of sub-MeV solar neutrinos!

SNO+

- partial fill of detector with 365 t of slow scintillator: LAB + 0.6 g/l PPO
- → first demonstration of event-by-event directional reconstruction of solar ⁸B neutrinos in slow scintillator
- MC/data: ~40% of events with E>5MeV are reconstructed with cosθ_{Sun}>0.8

Directionality in Borexino

- new analysis technique tested in the spectral region of sub-MeV solar ⁷Be neutrinos
- Borexino is not optimized for this task
 → main difficulty: only 1 out of 300 photons detected is of Cherenkov origin

CID method

- cut on early hit times (enriches to 8% Cherenkov),
- use *integrated* angular distributions of PMT hits relative to Sun position

Result

- observation of significant (>6σ!) angular excess caused by Cherenkov photons
- corresponding neutrino rate: 1.13^{+0.22}_{-0.25} of SSM prediction (incl. oscillations)

→ first directional detection of sub-MeV solar neutrinos!

THEIA25 as Module 4 of DUNE

Detector specifications

Total mass: Fiducial mass:

17-20 kt

Photosensors: 22,500x 10" PMTs

700x 8" LAPPDs

25% coverage w/ high QE ~3% coverage

Background levels: Radiopurity (H_2O) : Rock shielding:

~10⁻¹⁵ g/g in ²³⁸U, ²³²Th, ⁴⁰K 4300 m.w.e.

 \rightarrow equals the current photon collection of SK! \rightarrow upgrade for later phases (solar, $0\nu\beta\beta$)

 \rightarrow muon flux at SURF only ~10% of LNGS

THEIA25 : Staged Approach

Phase 3 multi-ton scale 0vββ search with loaded LS in suspended vessel and added photocoverage

Geoneutrinos

 0νββ search on <10meV scale

Future full physics stage: THEIA

Detector Specifications

Detector mass:	ca. 100 kt
Dimensions:	50-by-50 m? (WbLS transparency)
Photosensors:	mix of conventional PMTs (light collection) and LAPPDs (timing)
Location:	deep lab with neutrino beam (Homestake/SURF comes to mind)

Hybrid Detectors for Long-Baseline Neutrinos

⇒ v و

 $P(v_{\mu}$

e.g. in context of **DUNE Module of Opportunity**: What would a **large WbLS detector** add to the existing liquid-argon modules?

Added value for a δ_{CP} measurement

- Comparable statistics
 ~1.7:1 in mass for WbLS : LAr but better active volume ratio
- Complementary systematics
 e.g. cross-sections (simpler nuclei)
- Neutron tagging/recoils in final state

 → aids energy reco of hadronic recoils
 → neutrino/antineutrino discrimination
- Improved energy resolution for low energies (2nd oscillation maximum)
- Fast timing: ν energy measurement using initial π/K time-of-flight difference _

Astrophysical neutrinos at low energies

Solar Neutrinos precision measurements of CNO neutrinos and P_{ee}(E) with Li/Cl loading Supernova Neutrinos high-statistics \bar{v}_e signal resolved detection channels excellent pointing pre-SN signal

Diffuse Supernova Neutrinos C/S-based discrimination of atmospheric NC events

Geoneutrinos crust/mantle contribution U/Th ratio

Astrophysical neutrinos at low energies

Solar Neutrinos

precision measurements of CNO neutrinos and P_{ee}(E) with Li/Cl loading Supernova Neutrinos high-statistics \bar{v}_e signal resolved detection channels excellent pointing pre-SN signal

Diffuse Supernova Neutrinos C/S-based discrimination of atmospheric NC events

→ excellent S:B ratio

Geoneutrinos crust/mantle contribution U/Th ratio

DUNE Near Detector vs. THEIA?

DUNE Near Detector Complex

DUNE ND uses **agron** as target isotope → does this configuration suit THEIA?

Up to a point, yes!

- Predict neutrino spectrum at Far Site
- Measure the neutrino energy
- Measure cross-sections on oxygen (?)
- Measure neutrino flux
- Measure under different angles (PRISM concept)
- Monitor neutrino beam

4th **existing cavern** for 30-kt WbLS detector

Michael Wurm (Mainz

Solar neutrinos

Objectives:

- Precise measurement of CNO neutrino flux
- Spectral upturn of low-energy ⁸B neutrinos

> stellar physics, solar metallicity
> matter effects, BSM physics?

Spectral fit (cf. Borexino)

- ightarrow require efficient BG discrimination and sufficient light yield in 1-3 MeV range
- THEIA25: 2D directional & spectral fit
 CNO flux at 10% level after 5 yrs

Supernova Neutrinos in THEIA25

Galactic Supernovae (10kpc):

Expected events: ~5,000, mostly $\overline{\nu}_e$'s from IBD

- complementary to v_e signal in LAr
- Same location as DUNE Far Detectors:
 compare Earth matter effects in $\nu/\overline{\nu}$ channels
- Provide fast trigger for Lar TPCs, especially for far-off Supernovae (LMC: ~200 events in THEIA)

Detection channels can be separated due to **neutron & delayed decay tags**

- some all-flavor (ν_e+ν_μ+ν_τ) information from NC reactions on oxygen
- Enhanced SN pointing: ~2° based on ES with IBD background subtraction

Diffuse Supernova Neutrino Background

DSNB detection:

- Low-flux $\mathcal{O}(10^2 \text{ cm}^{-2}\text{s}^{-1}) \bar{\nu}_e$ signal → detectable by IBD: ~2 ev. per 10 kt·yrs
- Requires efficient BG discrimination, especially to atmospheric v NC interactions
- In THEIA:
 - ring counting:
 - Cherenkov/scintillation ratio
 - $\circ~$ delayed decay tags
- \rightarrow signal efficiency: 95%
- \rightarrow residual background: 1.7%

very clean measurement cf. JUNO & SK-Gd

THEIA25: 5 IBDs over 2.7 BG per year \rightarrow 5 σ discovery after 6 years

Signal/BG spectra and observation window

THEIA Proton decay sensitivity

Scintillation light allows observation of K+, as well as de-excitation γ s from "invisible" decay modes.

For $p \rightarrow e^+\pi^0$ mode, not likely to be competitive with Super-K/Hyper-K unless THEIA can be made > 200 kton

Neutrinoless double-beta decay

$0\nu\beta\beta$ in very large LS volumes

THEIA Whitepaper online!

arXiv:1911.03501

THEIA: An Advanced Optical Neutrino Detector

M. Askins,^{1,2} Z. Bagdasarian,³ N. Barros,^{4,5,6} E.W. Beier,⁴ E. Blucher,⁷ R. Bonventre,² E. Bourret,² E. Callaghan,^{1,2} J. Caravaca,^{1,2} M. Diwan,⁸ S.T. Dve,⁹ J. Eisch,¹⁰ A. Elagin,⁷ T. Engvist,¹¹ V. Fischer,¹² K. Frankiewicz,¹³ C. Grant,¹³ D. Guffanti,¹⁴ C. Hagner,¹⁵ A. Hallin,¹⁶ C. M. Jackson,¹⁷ R. Jiang,⁷ T. Kaptanoglu,⁴ J.R. Klein,⁴ Yu. G. Kolomensky,^{1,2} C. Kraus,¹⁸ F. Krennrich,¹⁰ T. Kutter,¹⁹ T. Lachenmaier,²⁰ B. Land,^{1, 2} K. Lande,⁴ J.G. Learned,⁹ V. Lozza,^{5, 6} L. Ludhova,³ M. Malek,²¹ S. Manecki,^{22, 18, 23} J. Maneira,^{5, 6} J. Maricic,⁹ J. Martyn,¹⁴ A. Mastbaum,²⁴ C. Mauger,⁴ F. Moretti,² J. Napolitano,²⁵ B. Naranjo,²⁶ M. Nieslonv,¹⁴ L. Oberauer,²⁷ G. D. Orebi Gann,^{1,2} J. Ouellet,²⁸ T. Pershing,¹² S.T. Petcov,^{29,30} L. Picard,¹² R. Rosero,⁸ M. Sanchez,¹⁰ J. Sawatzki,²⁷ S.H. Seo,³¹ M. Smiley,^{1,2} M. Smy,³² A. Stahl,³³ H. Steiger,²⁷ M. R. Stock,²⁷ H. Sunej,⁸ R. Svoboda,¹² E. Tiras,¹⁰ W. Trzaska,¹¹ M. Tzanov,¹⁹ M. Vagins,³² C. Vilela,³⁴ Z. Wang.³⁵ J. Wang.¹² M. Wetstein.¹⁰ M.J. Wilking.³⁴ L. Winslow.²⁸ P. Wittich.³⁶ B. Wonsak.¹⁵ E. Worcester,^{8,34} M. Wurm,¹⁴ G. Yang,³⁴ M. Yeh,⁸ E.D. Zimmerman,³⁷ and K. Zuber³⁸ ¹University of California, Berkeley, Department of Physics, CA 94720, Berkeley, USA ²Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720-8153, USA ³Forschungszentrum Jülich Institute for Nuclear Physics Wilhelm-Johnen-Straße 52425 Jülich, Germany ⁴Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6396 ⁵Universidade de Lisboa, Faculdade de Ciências (FCUL). Departamento de Física, Campo Grande, Edifício C8, 1749-016 Lisboa, Portugal ⁶Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Av. Prof. Gama Pinto, 2, 1649-003, Lisboa, Portugal ⁷ The Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA ⁸Brookhaven National Laboratory, Upton, New York 11973, USA ⁹University of Hawai'i at Manoa, Honolulu, Hawai'i 96822, USA ¹⁰Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA ¹¹Department of Physics, University of Jyväskylä, Finland

THEIA proto-collaboration: groups from 35+ institutions and eight countries (CA, CN, DE, FI, IT, KR, UK, US)

More information on:

- Detector technology
- Low energy neutrinos, e.g. geoneutrinos
- Nucleon decay
- LBL oscillations
- ..

Slow LS in Jinping Neutrino Experiment

Jinping Neutrino Experiment

- 2-5 kt of conventional LS, low fluor concentration
- conventional PMTs, but high optical coverage
- located at Jinping underground laboratory: 8000 mwe overburden
- → solar & geo-neutrinos

Slow LS: LAB + 0.1 g/l PPO

- slowed-down scintillation signal
- reduced scintillation output
- slightly improved transparency

Michael Wurm (Mainz