

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

The SNO+ Experiment

9 0

UNIVERSIDADE Đ COIMBRA

Nuno Barros, LIP/UC

The SNO+ Collaboration

A Multi-purpose Liquid Scintillator Detector

- Infrastructure inherited from the SNO experiment.
- Adapted from D₂O to scintillator detecting medium to give access to low energy (~MeV) measurements.

Physics Programme:

- Search for 0vββ in ¹³⁰Te
- Solar Neutrinos
- Reactor Anti-neutrinos
- Geo-neutrinos
- Supernova bursts
- Invisible nucleon decay

The SNO+ Detector

SNO+ Upgrades **Besides ropes and purification plant**

- Refurbishing the electronics
- Repair of many "dead" PMT bases
- All-new DAQ, adapted to the higher trigger rate
- New cover gas system
- New calibration systems capable of deploying in LAB scintillator
- New in-situ injected LED/laser light calibration system
- Calibration system cameras (for photogrammetry)

SNO+ Timeline

2016

Dec 2016 Start of Commissioning Data Taking

May 2017 Start of Water Phase

July 2019 Start of Scintillator Fill

<u>2017</u> <u>2018</u> <u>2019</u> <u>2020</u> <u>2021</u> <u>2022</u> <u>2023</u>

July 2021 End of Scintillator Fill

SNO+ Water Phase

SNO+Timeline Water Phase

Dec 2016 Start of Commissioning Data Taking

May 2017 Start of Water Phase

July 2019 Start of Scintillator Fill

2016 2017 2018 2019 2020 2021 2022 2023

July 2021 End of Scintillator Fill

Acrylic Vessel (AV) filled with 905 tonnes of ultrapure water (UPW)

Dataset I: **115 live days** May 2017 -> December 2017 **Dataset II: 190 live days** October 2018 -> July 2019

Water Phase Backgrounds External backgrounds measurement

Simple detector configuration.

from 1.21 to 0.93 events / year *ie* >20% below goals

Water Phase Physics Results Dataset I (115 days)

⁸B Solar neutrino flux Phys. Rev. D 99, 012012 (2019)

New limits for p, pp and pn invisible nucleon decay modes Phys. Rev. D 99, 032008 (2019)

~50% efficiency for triggering on a neutron in pure water Phys. Rev. C 102, 014002 (2020)

Water Phase Physics Results Updated Nucleon Decay results - Dataset II (~190 days)

- World's best limits on invisible modes of nucleon decay
 - Recently updated in arXiv:2205.06400

Decay Mode	Partial Lifetime Limit	Existing Limi
n	$9.0 imes 10^{29} ext{ y}$	$5.8 \times 10^{29} \text{ y}$
р		3.6×10^{29} y [
$\mathbf{p}\mathbf{p}$	$1.1 \times 10^{29} { m y}$	4.7×10^{28} y [
$\mathbf{n}\mathbf{p}$	$6.0 imes 10^{28} ext{ y}$	2.6×10^{28} y [
nn	1.5×10^{28} y	1.4×10^{30} y [

Improvement of a factor of 3 over existing limits

Water Phase Physics Results **Antineutrino Observation**

- First observation of reactor $\overline{v} + p \rightarrow e^+ + n$ events using pure water (undoped)
 - publication being prepared; detection of 9 and 10 events in two distinct analyses (BDT and likelihood) with >3 sigma significance
 - made possible by ~50% neutron detection efficiency (highest in a water Cherenkov detector)

this result does not challenge our understanding of Δm_{21}^2 ; but does draw attention to upcoming SNO+ measurements with full LS that will

SNO-- Scintillator Purification Plant

- reinforced mezzanine steel
- installed columns, vessels, heat exchangers, tank, pumps, valves, high-grade sanitary piping (orbital- welded, electropolished2012 stainless steel tubing)
- utility plumbing (cooling water, compressed air, vent, boil-off nitrogen)
- process control, wiring, instrumentation, electrical
- firewalls, fire detection and suppression

Scintillator Filling

Transfer via railcar from surface to underground

Purification and filling systems underground

LAB, Master Solution, and final scintillator assessed for quality hourly during purification plant operation and detector filling

- Observe excellent clarity above PPO absorption (UV-Vis spectroscopy)
- Light yield in excess of calibration standards

PPO

SNO+ Partial Scintillator-Fill Phase

SNO+ Timeline **Partial Fill Phase**

Dec 2016 Start of Commissioning Data Taking

May 2017 Start of Water Phase

July 2019 Start of Scintillator Fill

Due to Covid Pandemic, paused with 365t (47% full) Scintillator 0.5g/L PPO (25% nominal) ightarrowfor approximately 7 months ightarrow

2016 2017 2018 2019 2020 2021 2022 2023

July 2021 End of Scintillator Fill

SNO+Partial Fill Scintillator Light Yield

 Calibration sources (16N, AmBe) deployed through guide tubes into the external water region

With a PPO concentration of 0.5 g/L (25% of nominal concentration) we saw a LY equivalent of ~300 p.e. / MeV

SNO+Partial Fill Scintillator Background Measurement

- LS backgrounds measured at
 - ²¹⁴BiPo delayed coincidences for U chain $(T_{1/2} = 164 \mu s)$
 - (4.7 ± 1.2) x10⁻¹⁷ g_U/g_{LAB} ightarrow
 - ²¹²BiPo delayed coincidences for Th chain
 - (5.3 ± 1.5) x10⁻¹⁷ gTh/gLAB ightarrow

Base rate below requirements for $0\nu\beta\beta$

introduced with filling that decays away

SNO+Partial Fill Scintillator Physics

- ⁸B solar v + background fit to partial fill data
 - 5.5 m fiducial radius ullet
 - Includes preliminary systematics ightarrow
 - Flux fitted result compatible with other measurements \bullet
- Live for supernova
 - Burst monitoring part of SNEWS-1
 - Pre-supernova monitor enabled (IBD)
- Anti-neutrino measurement lacksquare
 - Using time coincidence of IBD ullet

SNO+ reactor antineutrinosin partial-fill

Events uniformly distributed in the detector

Fiducialisation to reduce background events from acrylic Publication in preparation

Fiducialisation to reduce background events from acrylic

Publication in preparation

 Δm_{21}^2 values corresponding to solar and reactor neutrino measurements allowed within 1σ

SNO+Timeline PPO top-up phase (from 0.5 g/L to 2.2 g/L)

2016

Dec 2016 Start of Commissioning Data Taking

May 2017 Start of Water Phase

July 2019 Start of Scintillator Fill

<u>2017</u> <u>2018</u> <u>2019</u> <u>2020</u> <u>2021</u> <u>2022</u> <u>2023</u>

July 2021 End of Scintillator Fill

SNO+ direction in scintillation

- Data collected with lower PPO concentration (~0.5 g/L) than nominal (2.2 g/L)
 - Lower LY and slower rise time permits to distinguish early (directional) Cherenkov light

Publication in preparation

SNO+ Scintillator Phase

Objectives for SNO+ Scintillator Phase 8B Solar v

- Attempt to measure ⁸B below 3 MeV
 - Probe into the transition region
 - larger fiducial volume than Borexino
 - cosmogenic backgrounds lower than KamLAND (e.g., no ¹⁰C, ¹¹C)

 $5 \times 10^{-17} \text{ g}_{^{238}\text{U}}/\text{g}_{\text{LAB}}, 5 \times 10^{-17} \text{ g}_{^{232}\text{Th}}/\text{g}_{\text{LAB}}$ $5 \times 10^{-18} \text{ g}_{^{238}\text{U}}/\text{g}_{\text{LAB}}, 5 \times 10^{-18} \text{ g}_{^{232}\text{Th}}/\text{g}_{\text{LAB}}$

Blue : U and Th at partial fill level Orange : U and Th below 10⁻¹⁷ g/g

Objectives for SNO+ Scintillator Phase Reactor antineutrinos (Δm_{21}^2)

- Sensitivity to probe the tension already after 1 year
 - Shape is more important than rate
- SNO+ location yields only two distinct baselines

KamLAND (~7x10⁻⁵ eV²)

Global (~5x10-5 eV²)

Objectives for SNO+ Scintillator Phase Reactor antineutrinos (Δm_{21}^2)

- Sensitivity to probe the tension already after 1 year
 - Shape is more important than rate
- SNO+ location yields only two distinct baselines

Why is this relevant for SNO+ 0vββ?

- The advantages of a well-understood detector with low backgrounds are being demonstrated!
- SNO+ has a diverse program of neutrino (and other) physics that is being pursued.
 - The physics themselves are relevant and interesting
 - ...better understanding of the detector means better background model
- With the detector performing well; with all background components being measured and constrained (most coming in at or below target levels), it looks promising for the final phase of SNO+...

SNO+ Tellurium Double Beta Phase

Neutrinoless Double Beta (0vßß) Decay in SNO+ **Strategy of Tellurium-Loaded Liquid Scintillator**

- **Massive Detector:**
 - High statistics
 - Shielding through fiducialisation
- **Liquid Scintillator**
 - Purification methods
 - Scalable loading
 - Homogeneous loading of isotope in detection medium
- Tellurium-130
 - Highest natural abundance, no enrichment required, low cost

Tellurium as a DBD candidate Why Te? Favourable Phase Space

Very high abundance

Telurium loaded LS Why liquid scintillator?

- Very low backgrounds: 5x10⁻⁷ counts/keV/kg_{fiducial detector}/yr
- Homogeneous detector volume reliable background model ightarrow
- "target out" ability to measure/constrain backgrounds before isotope added
- "sideband analysis" not just counts in a bin but distributions in position and energy verify detector response and background model
- liquid detector permits: assays, chemistry; liquid medium can be modified in situ (e.g., adding more Te, more fluor)

The dependence of a putative signal with amount of isotope would be a strong confirmation!

Tellurium Loading

- TeDiol is mixed directly into the LAB+PPO with 15 mg/L bis-MSB and a stabilizer called Dimethyldodecylamine (DDA).

Final Te-loaded LS cocktail expected to produce ~460 p.e. / MeV in SNO+ for 0.5% Te loading.

Tellurium Plants

- ~8 tons of telluric acid (TeA) has been "cooling" underground for several years.
- Ton-scale underground purification of TeA for further background reduction.
- Target purification for Te cocktail:

 $\sim 10^{-15} \text{ g/g U}$ $\sim 10^{-16} \text{ g/g Th}$

Te Loading plant Te purification plant

SNO+ Te-phase background projections Major contributions and mitigation strategies

Staged Te-loading allows us to assess Te-backgrounds

Well measured from previous experiments

U levels already <u>measured</u> below requirements in partial fill (<10⁻¹⁶ g/g)

below requirements in partial fill (<10⁻¹⁶ g/g)

SNO+ background suppression Multi-site background constraint

Analyses ongoing with promising results

3

Projected spectrum Assuming 0.5% loading

- Half-life sensitivity:
 - $T_{1/2} > 2x10^{26}$ years
 - Sensitive to $m_{\beta\beta} \sim 37-89 \text{ meV}$

 Full likelihood analysis using energy, radius and multi-site discriminators achieves this sensitivity with 3 years of data

FV of 3.3 m (not optimised)

SNO+Te-DBD **Additional Considerations**

- availability of isotopic enrichment
- LS DBD approach
- The competition does not make SNO+ Te DBD less relevant because of complementarity of isotope; NME model dependencies
- higher loading further extends SNO+ sensitivity and "fills the gap", before larger experiments like nEXO come online
- initial deployment of Te would already be competitive and ready to lacksquaretest any hints of a positive signal
- purification of Te underground is novel technology
- "target out" analysis is a strong and unique feature; all non-Te backgrounds constrained prior to adding any Te
- SNO+ also has single-site/multi-site background constraining power

¹³⁰Te DBD is scalable, cost effective, unimpacted by geopolitical events that currently severely affect the

KL-Z 800 has world-leading sensitivity (upper limit 36-156 meV) and highlights the strength of the loaded

Ovßß sensitivity

New Physics Sensitivity: Phase-Space-Weighted Half-life

2x10²⁶ yr (0.5% Te)

6x10²⁶ yr (1.5% Te)

Status of SNO+ Te-DBD

- Tellurium systems are built and ready for operation
 - SNO+ is ready to pursue full-scale test batches in 2022 and 2023 to purify telluric acid and synthesize tellurium-diol, with SNOLAB assistance in this effort to help retire risks
 - Following demonstration of operations and subsequent approvals, aim to begin loading Te in the detector in 2024 for the start of the double beta decay phase
 - Meanwhile, the SNO+ project, with endorsement from SNOLAB, is completing R&D to establish the viability and execution plans of Te loading at the 1.5%-2.0% concentration, enabling reaching our goal of DBD sensitivity in the Inverted Mass Ordering region of parameter space

Telluric acid purification

Te-Diol synthesis

Summary

- SNO+ is an operating liquid scintillator neutrino detector filled with LAB + 2.2 g/L PPO and taking data
- Well understood detector from water phase data: backgrounds are low \bullet
 - Solar, nucleon decay, neutron capture, anti-neutrino physics
- Early scintillator data (partial fill and low PPO loading) analysed igodol
 - scintillator performance and backgrounds, first scintillator physics measurements
- Diverse Scintillator Physics Program (some already underway) \bullet
 - 0vββ, Solar, reactor-v, geo-v, Supernova ...
- Already-built underground tellurium plants represent novel technology in the field of low-radioactivity techniques
- Scalable approach of SNO+ has huge potential for extending 0vββ sensitivity

• Operating the plants and demonstrating their capabilities is the next step towards preparing to load SNO+ with Te for the 0nββ phase