Loaded Liquid Scintillator Approach for a NH 0vββ Experiment

Steve Biller, Oxford University Lisbon Workshop 2022

Advantages of Loaded Liquid Scintillator

- Very clean (<10⁻¹⁷ g/g U/Th)
- Self-shielding against external backgrounds
- Assayable component-by-component
- Re-configurable
- Inexpensive
- Highly scalable

Disadvantages

• Reduced energy resolution compared to other approaches

Backgrounds from ⁸B and 2vββ "spillover" are significant for higher loadings and larger volumes

			elem.	world		Median	T _{1/2} ^{0v} for	Ton-yrs	equiv.	nat. elem.	cost (\$M)	0ν/2ν	
	Q	% nat.	cost	prod.	G ^{ov}	M⁰ ^v for	m=2meV	per	nat. elem.	cost (\$M)	if enriched	rates	
Isotope	(MeV)	abund.	\$/kg	(tons/yr)	(10 ⁻¹⁵ /yr)	g _A =1.25	(10 ³⁰ yr)	event	Ton-yrs	@1ev/yr	@ \$20/g	(10 ⁻¹⁰)	
⁴⁸ Ca	4.27	0.19	0.16	2.4E8	24.81	1.5	1.17	134	70766	11.3	2689	0.55	
⁷⁶ Ge	2.04	7.8	1650	118	2.363	5.1	1.06	193	2479	4090.2	3867	18.08	-
⁸² Se	3	9.2	174	2000	10.16	3.7	0.47	92	1002	174.3	1844	2.05	'
⁹⁶ Zr	3.35	2.8	36	1.4E6	20.58	3.2	0.31	71	2544	91.6	1425	0.76	
¹⁰⁰ Mo	3.03	9.6	35	2.5E5	15.92	5.6	0.13	31	326	11.4	626	0.53	
¹¹⁰ Pd	2.02	11.8	23000	200	4.815	6	0.38	99	841	19341.2	1985	3.98	
¹¹⁶ Cd	2.82	7.6	2.8	2.2E4	16.7	4.3	0.21	59	773	2.2	1175	1.32	
¹²⁴ Sn	2.29	5.6	30	2.5E5	9.04	3.2	0.71	209	3740	112.2	4189	14.18	
¹³⁰ Te	2.53	34.5	50	400	14.22	3.8	0.32	99	287	14.3	1980	25.79	
¹³⁶ Xe	2.46	8.9	1000	50	14.58	2.6	0.66	216	2424	2424.3	4315	32.61	
¹⁵⁰ Nd	3.37	5.6	42	1E4	63.03	2.8	0.13	47	848	35.6	949	0.69	

expensive, and
there are better ways to use this!

¹²⁴**Sn**: not as good as Te or Xe, but should re-visit if inexpensive enrichment becomes possible

¹³⁰Te: to be used by SNO+

¹³⁶**Xe**: demonstrated by KamLAND-Zen

Enriched Xe gas directly dissolves in scintillator at ~3% level

Very clean - not expected to carry any significant contaminants!

Little impact on fluorescence yield

Issues with ¹³⁶Xe

- Expensive
- Requires enrichment from 8.9%
- Relatively rare (total worldwide production ~50 tonnes = ~4.4 tonnes of isotope per yr)

Hard to imagine anything more than ~5 tonnes (can't get to NH)

At the multi-tonne scale, other approaches with better energy resolution (*e.g.* nEXO or maybe NEXT) might be more suitable

Te relatively abundant & inexpensive (~\$50/kg) ¹³⁰Te fraction = 34.5%

no enrichment necessary!

Looks like one of the very few possible contenders for a future NH experiment, and one with a potentially broad physics programme

The basic target numbers for a Te-loaded NH experiment are: ~10% ^{nat}Te loading in ~10kT fid volume with ~1000 hits/MeV (PRD 87, 071301(R), 2013)

Backgrounds

External Backgrounds from Detector/Cavity Radioactivity

Particularly from ²⁰⁸Tl, which can produce an un-tagged 2.6 MeV gamma. Self-shielding and fiducial volume cuts - minimise material near active volume. Solved

Internal Radioactivity (U/Th) from Scintillator

Scales with detector mass. Mainly ²¹⁴Bi with some from ²¹²Bi and ²⁰⁸TI. The vast majority can be identified by associated alpha (Bi-Po), but some inefficiency. Subdominant at higher loading levels and already handled well by scintillator purification and background rejection techniques. Solved

Internal Radioactivity (U/Th) Associated with Isotope Deployment

Scales with isotope mass. Less of an issue for Xe, which is transported as a gas. For Te, improve purification and background rejection techniques as isotope mass increases. Existing purification techniques may already be good enough, otherwise target process improvements. Solved/Solvable

Cosmogenic/Spallation Backgrounds

For ¹³⁰Te and ¹³⁶Xe, particularly isotopes such as ⁶⁰Co, ²²Na,^{110m}Ag, which have long half-lives. Purify to target these elements, go deep to prevent further activation, employ PSD techniques to identify any lingering contamination. Subdominant. Largely solved

⁸B Solar Neutrinos

Scales with detector mass. One of the main backgrounds, becoming less dominant for higher loading levels. Modest directional discrimination (*e.g.* Cherenkov) would make this subdominant. Potentially solvable

2vββ Spill-over

Fundamental (no way to discriminate) and dominant at higher loading. Strong function of energy resolution... goes as the power of ~5.5! (A 22% reduction in light doubles this background!)

ABSOLUTELY MUST KEEP THE LIGHT!!

Internal Radioactivity (U/Th) Associated with Isotope Deployment

Telluric Acid Purification via Induced Recrystallisation

S. Hans et al, Nuclear Inst. and Methods in Physics Research, A, Volume 795, p. 132-139

Dissolve TeA in UPW, filter to remove insoluble contaminants

Induce recrystallisation with acid, rinse to remove soluble contaminants

Final stage thermal recrystallisation, cold water rinse to remove acid

Single Pass Reduction Factors

Isotope	XRF Sensitivity (ppm) ³	Reducing Factor
\mathbf{Sn}^{1}	6.0	>1.67×10 ²
Zr^1	3.6	>2.78×10 ²
\mathbf{Co}^1	1.5	(1.15±0.66)×10 ³
Ag^1	3.6	>2.78×10 ²
\mathbf{Y}^1	3.6	>2.78×10 ²
Sc^1	18	>1.65×10 ²
\mathbf{Sb}^{1}	12	>2.43×10 ²
²²⁸ Th ²	-	$(3.90\pm0.19)\times10^2$
224 Ra ²	-	$(3.97\pm0.20)\times10^2$
²¹² Pb ²	-	$(2.99\pm0.22)\times10^{2}$
$^{212}\mathrm{Bi}^2$	-	$(3.48\pm0.81)\times10^2$

Medium-Scale (10kg) Te Purification Test

Co/Ag/Sn spike

Zoomed view post-purification

Telluric Acid Purification

- TeA dissolved in UPW
- 2 nitric acid-induced recrystallisations (pur factor >100 per pass)
- Thermal recrystallisation to remove nitric
- Redissolve in UPW

Ultimately limited by nitric and UPW wash

Cosmogenic/Spallation Backgrounds

Multi-site event discrimination in large liquid scintillation detectors

(Dunger and Biller, NIM, 943, 162420, 1 November 2019, arXiv:1904.00440)

Can identify signal as distinct from cosmogenic background -> discovery experiment!

without multi-site parameter

with multi-site parameter

⁸B Solar Neutrino Background

Cherenkov Separation in Liquid Scintillator for Directional Rejection of ⁸B at 2.5 MeV

C. Aberle et al., JINST 9, P06012 (2014)

1) Time separation in standard scintillator using very fast photodetectors (e.g. LAPPDs)

Simulations of large-scale detector performance are disappointing, largely due to covariances in vertex reconstruction and dispersion, even for ideal detectors. Plus potentially expensive.

M. Li *et al.*, NIM A 830, 303 (2016), 2) Time separation aided by weak scintillators to increase the fluorescence timescale Weak scintillators also have notably reduced light output... must keep the light!

3) Spectral separation using dichroic concentrators

• Limited spectral range at high end for Cherenkov

- Red-sensitive PMTs expensive, noisy with modest efficiency
- Front PMT blocks light to back PMT... must keep the light!

4) Slow-fluor scintillator formulations

Efficient separation, wide spectral coverage for Cherenkov, full PMT coverage for all light, easy to implement. Some compromise in vertex resolution, but impact on multi-site partly compensated by discrimination based on Cherenkov light

High QY and has good enough solubility to nonradiatively couple with PPO, less quenching than slower fluors.

Overall quenching from loading will enhance Cherenkov separation Te Loading

Te Loading in Liquid Scintillator for $0\nu\beta\beta$

(paper in progress)

Loading Stability

No "crashes" have ever been observed with the current loading technique, with loading stability in excess of 6 years demonstrated, yielding a conservative extrapolation of > 12 years in the detector (Arrhenius temperature scaling)

Optical Stability

Yellowing can occur if unpurified/old LAB and DDA are used that contain high levels of free radicals (can be tracked with various tests), but samples made with appropriately purified reagents are optically stable in excess of several years at least, conservatively extrapolated to > 6 years in the detector:

Sample	Storage Temperature (°C)	Observed Stability (years)	Conservative projected lower limit on SNO+ TeLS lifetime (years)
T-1000	~22	>3.3	>6.7
LT3 & subsamples	~22	>2.7	>5.2
T-1003-10	40	>0.9	>5.6

TeBD Synthesis Plant

Mixture of TeA in water and distilled butanediol is heated while water is flash-evaporated in the synthesis tank Transferred to mixing tank near solubility point to combine with LAB and 0.25mol DDA to complete solubilisation

Wavelength (nm)

Scattering lengths for LAB available in the literatures: 26.2 ± 1.9 [27] and 28.5 ± 2.3 [28]

- t_0 = 62.1 +/- 0.00 ns
- = 0.77 +/- 0.04 ns τ_**r**
- = 8.1 +/- 0.1 ns τ_f

Ceren/Scint = 0.0617 +/- 0.0023

Detector Construction

- Complex
- Expensive
- Hard to construct
- Hard to keep clean
- High bkds near edges
- Inner ballon tricky

New Design Concept for Large Scale LS Detectors: Stratified Liquid Plane Scintillator (SLiPS)

Morton-Blake and Biller, Physical Review D, 105(7) (2022)

New Design Concept for Large Scale LS Detectors: Stratified Liquid Plane Scintillator (SLiPS)

Morton-Blake and Biller, Physical Review D, 105(7) (2022)

Hit density gives good resolution in X-Y plane

Wavefront timing give good resolution in X plane

Energy response uniform to ±4%

vertical scintillator height = 10m

1700

1600

1500

1400

1300

1200

1100

1000

Double-Sided SLiPS

propylene glycol ______

10% Te-loaded DIN: ρ~1.1

Buffer liquids need to not react and interfere with Te loading at the interfaces!

Employing silicone and fluorinated synthetic oils looks promising... but potentially expensive

Alternative "Semi-SLiPS"

A compressed SLiPS configuration can yield better notably light output than a spherical detector for scintillators with short attenuation and scatter lengths

10kT Detector: Double SLiPS (5m) vs Sphere

Sensitivity Projections

Input Assumptions		RC	OI (sigmas):	-2 to -1.5	-1.5 to -1	-1 to -0.5	-0.5 to 0	0 to 0.5	0.5 to 1	1 to 1.5	1.5 to 2	2 to 2.5	Sum(5-1.5)	Sum(0-1.5)	Sum(0.5-1.5)
Hits/MeV	400	Sig	gnal Fraction	0.0440	0.0919	0.1498	0.1915	0.1915	0.1498	0.0919	0.0440	0.0166			
Loading %	0.5	8B	3	6.85	6.85	6.85	6.85	6.85	6.85	6.85	6.85	6.85	27.40	20.55	13.70
Fid Radius (m)	4.1	2n	าน	80.01	35.26	14.08	5.03	1.62	0.42	0.10	0.02	0.00	7.17	2.14	0.51
Livetime (yr)	3	Ex	ternals	1.09	2.28	3.71	4.74	4.74	3.71	2.28	1.09	0.41	15.47	10.73	5.98
Detector Radius (m)	6	U/	/Th	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	10.80	8.10	5.40
Vessel thickness (m)	0.05	Co	osmogenics	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00
Vessel 232Th (g/g)	2.31E-13	Ot	ther	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00
Scint density (g/cm^3)	0.87	Ba	ackground Sum	90.65	47.08	27.34	19.33	15.92	13.68	11.93	10.66	9.97			
Scint 238U (g/g)	1.00E-16	Fic	d Vol (tonnes)	251.1649683			Ext 208Tl (un	seen e-'s)	1.16E+06				214Bi decays	in fid vol	3.773E+06
Isotope 238U (g/g)	5.18E-12	Iso	otope (tonnes)	0.426980446			Ext fid solid a	ngle	0.13494673				Bi-Po tagging	inefficiency	2.435E-05
Bi-Po min tag sep (ns)	4														
Cosmo as frac of 8B	0		60			ethetical Cian	-1	Background	(-0.5 to 1.5 σ)		Background	(0 to 1.5 σ)	Bac	kground (0.5 to	ο 1.5 σ)
Other as frac of 8B	0				= 1yp	othetical Sign	iai	0	(,		0	(,		0	
8B scaling:	1		50		= 211u	7									
Scint 238U scaling:	1	hir			Cost	mogenics									
Vessel 232Th scaling:	0.5	24	g 40 —		Exte	rnals									
Isotope 238U scaling:	1	0.			U/T	h			<mark>,</mark>						
Cosmo scaling:	1	ner	E 30		■8B										
Isotopic fraction:	0.34	uts.	20												
A	130		5 20												
G0v	14.22	Ŭ	10												
Endpoint energy (MeV)	2.5		10					8B	2nu	= 8	BB	2nu	■ 8B	2 n	u
2nu half-life (yr)	7.70E+20		0					Externals	U/Th	= 6	xternals	U/Th	= Exte	ernals 🛛 U/	Th
gA:	1.27		2.40 2.44	4 2.48 2.5	52 2.56 2	2.60 2.64	2.68	Cosmogonia	c Other		`osmogenics	Other	Cos	mogenics • Ot	her
				Ener	rgy (MeV)			cosmogenie			Josinogenies	- 01101	- 003	inogenies – ori	
CI:	0.9		RESULT	S		CDFT	QRPA-FFS	QRPA-JY	QRPA-Tu	QRPA-NC	IBM2	ISM-Tk	ISM-INFN	GCM	
		Ha	alf-Life Bound:	1.99E+26	M0v:	4.89	2.9	4	3.89	1.37	4.2	2.76	3.26	6.366	
			Sensitivity:	2.83E+12	mββ (meV):	38.53	64.96	47.10	48.43	137.51	44.85	68.26	57.79	29.59	

Input Assumptions			ROI (sigmas):	-2 to -1.5	-1.5 to -1	-1 to -0.5	-0.5 to 0	0 to 0.5	0.5 to 1	1 to 1.5	1.5 to 2	2 to 2.5	Sum(5-1.5)	Sum(0-1.5)	Sum(0.5-1.5)
Hits/MeV	400		Signal Fraction	0.0440	0.0919	0.1498	0.1915	0.1915	0.1498	0.0919	0.0440	0.0166			
Loading %	0.5		8B	920.34	920.34	920.34	920.34	920.34	920.34	920.34	920.34	920.34	3681.36	2761.02	1840.68
Fid Radius (m)	13	┥	2nu	10748.80	4736.76	1892.20	676.35	217.94	55.79	13.21	2.66	0.45	963.29	286.94	69.00
Livetime (yr)	10	┢	Externals	1.43	3.00	4.89	6.24	6.24	4.89	3.00	1.43	0.54	20.37	14.13	7.88
Detector Radius (m)	15	┢	U/Th	362.90	362.90	362.90	362.90	362.90	362.90	362.90	362.90	362.90	1451.61	1088.70	725.80
Vessel thickness (m)	0.05		Cosmogenics	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00
Vessel 232Th (g/g)	2.31E-13		Other	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00
Scint density (g/cm^3)	1.1	┥	Background Sum	12033.48	6023.00	3180.33	1965.84	1507.42	1343.92	1299.45	1287.34	1284.24			
Scint 238U (g/g)	1.00E-16		Fid Vol (tonnes)	10123.04074	←		Ext 208Tl (un	seen e-'s)	2.40E+07				214Bi decays	in fid vol	5.069E+08
Isotope 238U (g/g)	5.18E-12		Isotope (tonnes)	17.20916925			Ext fid solid a	ngle	0.25055617				Bi-Po tagging	inefficiency	2.435E-05
Bi-Po min tag sep (ns)	4														
Cosmo as frac of 8B	0		7000				-1	Background	(-0.5 to 1.5 σ)		Background	(0 to 1.5 σ)	Bac	kground (0.5 to	ο 1.5 σ)
Other as frac of 8B	0				Hyp 2mu	othetical Sign	iai		(,			(,			,
8B scaling:	1		6000		Othe	2 7									
Scint 238U scaling:	1		·불000		Cost	novenics									
Vessel 232Th scaling:	0.5		Q		Exte	rnals									
Isotope 238U scaling:	1		d 1000	.	U/T	h									
Cosmo scaling:	1		e e e e e e e e e e e e e e e e e e e		8 B										
Isotopic fraction:	0.34		Itso												
A	130		2000			800.									
G0v	14.22		Ŭ												
Endpoint energy (MeV)	2.5		1000					8B	2nu	= 8	3B	2nu	8 B	2 n	u
2nu half-life (yr)	7.70E+20		0					Externals	U/Th	= 6	Externals	U/Th	= Exte	ernals 🛛 U/	Th
gA:	1.27		2.40 2.4	4 2.48 2.5	52 2.56 2	2.60 2.64	2.68	Cosmogonia	c = Other	- (Cosmogenics	Other	- Cos	mogenics - Ot	hor
				Ene	rgy (MeV)			cosmogenic			cosmogenies	- other	- 003	inogenies = or	
CI:	0.9		RESULT	S		CDFT	QRPA-FFS	QRPA-JY	QRPA-Tu	QRPA-NC	IBM2	ISM-Tk	ISM-INFN	GCM	
			Half-Life Bound:	2.89E+27	M0v:	4.89	2.9	4	3.89	1.37	4.2	2.76	3.26	6.366	
			IG Sensitivity:	4.11E+13	mββ (meV):	10.11	17.05	12.36	12.71	36.09	11.77	17.91	15.16	7.77	

Input Assumptions			ROI (sigmas):	-2 to -1.5	-1.5 to -1	-1 to -0.5	-0.5 to 0	0 to 0.5	0.5 to 1	1 to 1.5	1.5 to 2	2 to 2.5	Sum(5-1.5)	Sum(0-1.5)	Sum(0.5-1.5)
Hits/MeV	400		Signal Fraction	0.0440	0.0919	0.1498	0.1915	0.1915	0.1498	0.0919	0.0440	0.0166			
Loading %	10	◀━	8B	920.34	920.34	920.34	920.34	920.34	920.34	920.34	920.34	920.34	3681.36	2761.02	1840.68
Fid Radius (m)	13	━	2nu	214976.04	94735.20	37843.98	13527.09	4358.73	1115.87	264.17	53.29	9.06	19265.86	5738.77	1380.04
Livetime (yr)	10	━	Externals	1.43	3.00	4.89	6.24	6.24	4.89	3.00	1.43	0.54	20.37	14.13	7.88
Detector Radius (m)	15	━	U/Th	7180.62	7180.62	7180.62	7180.62	7180.62	7180.62	7180.62	7180.62	7180.62	28722.48	21541.86	14361.24
Vessel thickness (m)	0.05		Cosmogenics	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00
Vessel 232Th (g/g)	2.31E-13		Other	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00
Scint density (g/cm^3)	1.1	━	Background Sum	223078.43	102839.16	45949.83	21634.30	12465.94	9221.72	8368.12	8155.69	8110.57			
Scint 238U (g/g)	1.00E-16		Fid Vol (tonnes)	10123.04074	←		Ext 208Tl (un	seen e-'s)	2.40E+07				214Bi decays	in fid vol	1.003E+10
Isotope 238U (g/g)	5.18E-12		Isotope (tonnes)	344.1833851			Ext fid solid a	ngle	0.25055617				Bi-Po tagging	inefficiency	2.435E-05
Bi-Po min tag sep (ns)	4														
Cosmo as frac of 8B	0		120000		. II	ethetical Cian	-1	Background	(-0.5 to 1.5 σ)		Background	(0 to 1.5 σ)	Bac	kground (0.5 to	ο 1.5 σ)
Other as frac of 8B	0				2 ru	othetical Sign	iai	0	(0	,		0	,
8B scaling:	1		100000		= Oth	7	-								
Scint 238U scaling:	1		pit		Cos	mogenics									
Vessel 232Th scaling:	0.5		60000		Exte	rnals									
Isotope 238U scaling:	1		0		U/T	h			K I						
Cosmo scaling:	1		50000		8 B										
Isotopic fraction:	0.34		¥0000		L										
A	130		no												
G0v	14.22		20000												
Endpoint energy (MeV)	2.5		20000				1	8B	2nu	= 8	В	2nu	8 B	2 n	u
2nu half-life (yr)	7.70E+20		0					Externals	U/Th	= E	xternals	U/Th	= Exte	ernals <mark>=</mark> U/	Th
gA:	1.27		2.40 2.4	4 2.48 2.	.52 2.56	2.60 2.64	2.68	Cosmogenic	s Other		osmogenics	Other	Cos	mogenics • Ot	her
				Ene	ergy (MeV)			cosmogenic			osmogemes	- 011101	- 005	inogenies = or	
CI:	0.9		RESULT	S		CDFT	QRPA-FFS	QRPA-JY	QRPA-Tu	QRPA-NC	IBM2	ISM-Tk	ISM-INFN	GCM	
			Half-Life Bound:	1.98E+28	M0v:	4.89	2.9	4	3.89	1.37	4.2	2.76	3.26	6.366	
			TG Sensitivity:	2.82E+14	mββ (meV):	3.86	6.51	4.72	4.85	13.78	4.50	6.84	5.79	2.97	

Input Assumptions			ROI (sigmas):	-2 to -1.5	-1.5 to -1	-1 to -0.5	-0.5 to 0	0 to 0.5	0.5 to 1	1 to 1.5	1.5 to 2	2 to 2.5	Sum(5-1.5)	Sum(0-1.5)	Sum(0.5-1.5)
Hits/MeV	400		Signal Fraction	0.0440	0.0919	0.1498	0.1915	0.1915	0.1498	0.0919	0.0440	0.0166			
Loading %	10	◀-	8B	920.34	920.34	920.34	920.34	920.34	920.34	920.34	920.34	920.34	3681.36	2761.02	1840.68
Fid Radius (m)	13	◀—	2nu	214976.04	94735.20	37843.98	13527.09	4358.73	1115.87	264.17	53.29	9.06	19265.86	5738.77	1380.04
Livetime (yr)	10	━	Externals	1.43	3.00	4.89	6.24	6.24	4.89	3.00	1.43	0.54	20.37	14.13	7.88
Detector Radius (m)	15	━	U/Th	721.73	721.73	721.73	721.73	721.73	721.73	721.73	721.73	721.73	2886.91	2165.19	1443.46
Vessel thickness (m)	0.05		Cosmogenics	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00
Vessel 232Th (g/g)	2.31E-13		Other	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00
Scint density (g/cm^3)	1.1	←	Background Sum	216619.54	96380.27	39490.94	15175.41	6007.05	2762.83	1909.23	1696.79	1651.67			
Scint 238U (g/g)	1.00E-16		Fid Vol (tonnes)	10123.04074	←		Ext 208Tl (un	seen e-'s)	2.40E+07				214Bi decays	in fid vol	1.008E+09
Isotope 238U (g/g)	5.18E-12		Isotope (tonnes)	344.1833851			Ext fid solid a	ngle	0.25055617				Bi-Po tagging	inefficiency	2.435E-05
Bi-Po min tag sep (ns)	4														
Cosmo as frac of 8B	0		120000			ethetical Cier	-1	Background	(-0.5 to 1.5 σ)		Background	(0 to 1.5 σ)	Bac	kground (0.5 to	ο 1.5 σ)
Other as frac of 8B	0				= Hyp	othetical Sign	iai	0.000	(,		0	(,		0	,
8B scaling:	1		100000		= 211u	er									
Scint 238U scaling:	1		bir			mogenics									
Vessel 232Th scaling:	0.5		60000		Exte	ernals									
Isotope 238U scaling:	0.1	━	0		U/T	h									
Cosmo scaling:	1		50000		■8B										
Isotopic fraction:	0.34		¥0000		L										
A	130		no												
G0v	14.22		20000												
Endpoint energy (MeV)	2.5		20000		bibble -			8 B	2nu	= 8	B	2nu	8 B	2 n	u
2nu half-life (yr)	7.70E+20		0					Externals	U/Th	= 6	xternals	U/Th	= Exte	ernals 🛛 – U/	Th
gA:	1.27		2.40 2.4	14 2.48 2.	52 2.56	2.60 2.64	2.68	Cosmogonia	c Other		`osmogenics	Other	Cos	mogenics Ot	her
				Ene	ergy (MeV)			cosmogenic			Josinogenies	- other	- 003	inogenies = or	
CI:	0.9		RESULT	S		CDFT	QRPA-FFS	QRPA-JY	QRPA-Tu	QRPA-NC	IBM2	ISM-Tk	ISM-INFN	GCM	
			Half-Life Bound:	3.15E+28	M0v:	4.89	2.9	4	3.89	1.37	4.2	2.76	3.26	6.366	
			IG Sensitivity:	4.48E+14	mββ (meV):	3.06	5.16	3.74	3.85	10.93	3.56	5.42	4.59	2.35	

Input Assumptions			ROI (sigmas):	-2 to -1.5	-1.5 to -1	-1 to -0.5	-0.5 to 0	0 to 0.5	0.5 to 1	1 to 1.5	1.5 to 2	2 to 2.5	Sum(5-1.5)	Sum(0-1.5)	Sum(0.5-1.5)
Hits/MeV	520	┥	Signal Fraction	0.0440	0.0919	0.1498	0.1915	0.1915	0.1498	0.0919	0.0440	0.0166			
Loading %	10	-	8B	242.16	242.16	242.16	242.16	242.16	242.16	242.16	242.16	242.16	968.63	726.47	484.32
Fid Radius (m)	13	↓	2nu	104483.05	46043.38	18393.00	6574.46	2118.44	542.34	128.39	25.90	4.41	9363.63	2789.17	670.73
Livetime (yr)	10	┥	Externals	1.43	3.00	4.89	6.24	6.24	4.89	3.00	1.43	0.54	20.37	14.13	7.88
Detector Radius (m)	15	┥	U/Th	633.00	633.00	633.00	633.00	633.00	633.00	633.00	633.00	633.00	2531.99	1898.99	1266.00
Vessel thickness (m)	0.05		Cosmogenics	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00
Vessel 232Th (g/g)	2.31E-13		Other	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00
Scint density (g/cm^3)	1.1	┥	Background Sum	105359.64	46921.53	19273.04	7455.86	2999.84	1422.38	1006.54	902.49	880.10			
Scint 238U (g/g)	1.00E-16		Fid Vol (tonnes)	10123.04074	←		Ext 208Tl (un	seen e-'s)	2.40E+07				214Bi decays	in fid vol	1.008E+09
lsotope 238U (g/g)	5.18E-12		Isotope (tonnes)	344.1833851			Ext fid solid a	ngle	0.25055617				Bi-Po tagging	inefficiency	2.435E-05
Bi-Po min tag sep (ns)	4														
Cosmo as frac of 8B	0		60000			athetical Cim	-1	Background	(-0.5 to 1.5 σ)		Background	(0 to 1.5 σ)	Bac	kground (0.5 to	ο 1.5 σ)
Other as frac of 8B	0				2mi	othetical Sign	lai	0	,		0	,		0	,
8B scaling:	0.3	╉	50000		= 0th	of.									
Scint 238U scaling:	1		bir		Cos	mogenics									
Vessel 232Th scaling:	0.5		\$0000		Exte	rnals									
Isotope 238U scaling:	0.1	╉	0		U/T	h			J						
Cosmo scaling:	1		30000		8 B										
Isotopic fraction:	0.34		Sooo								$\mathbf{\mathbf{v}}$				
A	130		mo												
G0v	14.22		0000												
Endpoint energy (MeV)	2.5		10000					8B	2nu	= 8	В	2nu	■ 8B	2n	u
2nu half-life (yr)	7.70E+20		0					Externals	U/Th	= E	xternals	U/Th	= Exte	ernals 🛛 🖬 U/	Th
gA:	1.27		2.41 2	.45 2.48 2	2.52 2.55	2.59 2.62	2.66	Cosmogenic	s Other		osmogenics	Other	Cos	mogenics Otl	her
				En	ergy (MeV)			cosmogenie			osmogemes		- 005	inogenies – ori	
CI:	0.9		RESULT	S		CDFT	QRPA-FFS	QRPA-JY	QRPA-Tu	QRPA-NC	IBM2	ISM-Tk	ISM-INFN	GCM	
			Half-Life Bound:	4.44E+28	M0v:	4.89	2.9	4	3.89	1.37	4.2	2.76	3.26	6.366	
			IG Sensitivity:	6.32E+14	mββ (meV):	2.58	4.35	3.15	3.24	9.20	3.00	4.57	3.87	1.98	

400 x (30/12) x (85/45) x (35/70) x (0.8)SNO+upgrade to
HQE PMTsimproved
coveragescintillator
light yield (sphere or $\Lambda_{abs}=40m$ SNO+ light yield (sphere or SLiPS) Sum(-.5-1.5) Sum(0.5-1.5) ROI (sigmas): -2 to -1.5 -1.5 to -1 -1 to -0.5 -0.5 to 0 0 to 0.5 0.5 to 1 1 to 1.5 1.5 to 2 2 to 2.5 Sum(0-1.5) Input Assumptions Hits/MeV 750 Signal Fraction 0.0440 0.0919 0.1498 0.1915 0.1915 0.1498 0.0919 0.0440 0.0166 8B 604.91 403.27 Loading % 10 201.64 201.64 201.64 201.64 201.64 201.64 201.64 201.64 201.64 806.55 2nu Fid Radius (m) 13 38162.48 16817.36 6718.05 2401.33 773.76 198.09 46.89 9.46 1.61 3420.07 1018.74 244.98 10 Externals 1.43 3.00 4.89 6.24 6.24 4.89 3.00 1.43 0.54 20.37 14.13 7.88 Livetime (yr) U/Th Detector Radius (m) 15 527.08 527.08 527.08 527.08 527.08 527.08 527.08 527.08 527.08 2108.30 1581.23 1054.15 Vessel thickness (m) 0.05 Cosmogenics 0 0 0 0 0 0 0 0 0 0.00 0.00 0.00 0 0 0 Vessel 232Th (g/g) 2.31E-13 Other 0 0 0 0 0 0 0.00 0.00 0.00 38892.62 17549.07 7451.65 3136.28 931.69 Scint density (g/cm^3) 1.1 Background Sum 1508.72 778.60 739.61 730.86 1.00E-16 10123.04074 Ext 208Tl (unseen e-'s) 2.40E+07 214Bi decays in fid vol Scint 238U (g/g) Fid Vol (tonnes) 1.008E+09 Isotope 238U (g/g) 5.18E-12 344.1833851 Ext fid solid angle 0.25055617 Bi-Po tagging inefficiency 2.435E-05 Isotope (tonnes) Bi-Po min tag sep (ns) 4 Cosmo as frac of 8B 0 20000 Background (-0.5 to 1.5σ) Background (0 to 1.5 o) Background (0.5 to 1.5σ) Hypothetical Signal Other as frac of 8B 0 18000 2nu 0.3 8B scaling: 16000 Other Scint 238U scaling: 1 -g 4000 Cosmogenics Vessel 232Th scaling: 0.5 ■ Externals Ž2000 Isotope 238U scaling: 0.1 U/Th 20000 Cosmo scaling: 1 **8**B 28000 S8000 Isotopic fraction: 0.34 tm6000 130 G0v 14.22 O_{4000} 8B 8B Endpoint energy (MeV) 2.5 8B 2nu 2nu 2nu 2000 2nu half-life (yr) 7.70E+20 U/Th U/Th Externals Externals 0 Externals U/Th 1.27 gA: 2.43 2.46 2.49 2.51 2.54 2.57 2.60 2.63 Cosmogenics Other Cosmogenics Other Cosmogenics Other Energy (MeV) CI: 0.9 RESULTS CDFT **QRPA-FFS QRPA-JY** QRPA-Tu QRPA-NC IBM2 ISM-Tk ISM-INFN GCM Half-Life Bound: 5.82E+28 M0v: 4.89 2.9 4 3.89 1.37 4.2 2.76 3.26 6.366 2.25 2.75 mββ (meV): 3.80 2.83 8.04 2.62 3.99 3.38 1.73 IG Sensitivity: 8.27E+14

○ CDFT
◆ QRPA-FFS
□ QRPA-JY
■ QRPA-Tu
◆ QRPA-NC
× IBM2
▲ ISM-Tk
▲ ISM-INFN
● GCM

