CUPID: CUORE Upgrade with Particle ID

F.Bellini, Sapienza University & INFN

DBD workshop: the road to normal hierarchy

Lisboa, June 6 2022

CUPID Baseline Sensitivity

Goal: cover the Inverted Hierarchy region and a fraction of normal one

- $3\sigma m_{\beta\beta}$ discovery sensitivity in the 12-20 meV range
- 3σ discovery sensitivity $T_{1/2} > 1.1 \times 10^{27}$ yrs

Cryogenic calorimeters

- Solid state detectors operating at low temperatures ~10 mK
- Readout with sensitive semiconductor NTD-Ge thermistor
- Isotope of interest embedded in the source
 - Flexible choice of isotopes (Mo,Cd,Se,Te)
- Resolution $@0\nu\beta\beta$ energy: ~0.2% FWHM
- Detector response independent of particle types

CUORE successes

• Since 2019: 90% uptime (70 % physics data). Stable data taking: 50 kg/month

CUORE SUCCESSES

CUORE limits: a bkgd

- Fit to the observed spectra to extract origin and level of contaminants
- 90% degraded α background
 - decays with Q-value in 4-8 MeV range that lose part of the energy in nearby passive materials

10% γ , muons <1%</p>

CUPID Strategy

A ton scale high-resolution detector array for the search of $0\nu\beta\beta$ in the inverted hierarchy

- Re-use CUORE Infrastructure
- Replace CUORE ^{nat}TeO₂ detectors with an array of 95% enriched Li₂¹⁰⁰MoO₄

- Enough to take a leap forward in sensitivity because we reduce dramatically (~150) the background
 - ¹⁰⁰Mo has higher Q_{ββ} (3037 keV) than ¹³⁰Te(2.5 MeV): less γ-induced background in ROI, more favourable phase space and matrix element
 - new detector with very efficient a particle rejection: remove the dominant background in CUORE

Concept

CUPID

- Single module: Li₂¹⁰⁰MoO4, 45x45x45 mm, 280 g
- Detector: 1596 crystals in 57 towers, 14 floors 2 crystals each
 - ► ~240 kg of ¹⁰⁰Mo ~1.6.10²⁷ ¹⁰⁰Mo atoms
- Ge light detector (LD) with SiO antireflective coating
 - NTD readout for both LD and Li₂¹⁰⁰MoO4
- Physics reach
 - 10 yrs run time
 - Energy resolution: 5 keV FWHM
 - Background: 10-4 cts/(keV kg yr)
 - Discovery sensitivity $T_{1/2} > 1.1 \times 10^{27}$ yr (3 σ)
 - Discovery sensitivity $M_{\beta\beta}$: [12-20] meV (3 σ)

Detector Module

thermally interconnected Gravity stacked structure S Crvstal

Tower

Collaboration

International collaboration: ~140 collaborators across 7 countries

Leverage previous collaborative experiences

https://cupid.lngs.infn.it

building the only project of comparable scale

Major participants: Italy (~60 authors), US (~40 authors), France (~25 authors) Other participants: Ukraine, Russia, China, Spain

Integrate the experience from CUPID-0 and CUPID-Mo in operating detectors with Particle Identification technology

CUPID-0

Collaboration

International collaboration: ~140 collaborators across 7 countries

Leverage previous technical experiences

Long-lasting and well developed interaction with LNGS services and infrastructure

https://cupid.lngs.infn.it/

Cost and time-effective reuse of the CUORE underground infrastructure

Fully leverages the CUORE cryogenic infrastructure, experience and expertise in its operation

Re-use a unique existing infrastructure CUPID leverages many years of work and investment

CUPID Background model

Our background model reconstruction approach is well validated in multiple experiments.

All the materials for CUPID have been directly measured in bolometric setups.

Characterize β/γ background from cryogenic system and detector holders in the ¹⁰⁰Mo ROI (Q_{ββ}= 3034 keV) $\begin{array}{l} \alpha \text{-rejection} \\ \text{Confirms the } \beta/\gamma \\ \text{background from detector} \\ \text{holders in 3 MeV ROI} \end{array}$

Data confirms:

- α tagging performance
- Radiopurity of crystals
- Energy resolution

PID

Background budget

Our background model reconstruction approach is well validated in multiple experiments.

All the materials for CUPID have been directly measured in bolometric setups.

- demonstrated required crystal purity levels
- holders U/Th contamination levels achieved in CUORE are sufficient for CUPID (CUORE protocols for passive elements cleaning)
- contamination in cryogenic shields is well understood
- pileup background is well modelled and reduction possible with current technology

CUPID (baseline) goal

Well-defined path to reduce the CUORE backgrounds to the levels required for CUPID

Pile up

Th

re

- Relatively fast decay rate of ¹⁰⁰Mo T_{1/2 2v} = 7.1x10¹⁸ yrs leads to possibility of two 2vββ decays events piling up & reconstructing in ROI
- Rejection depends on: signal amplitude & rise time, Bessel frequency, sampling rate, NPS and algorithms
- Validated nock data to explore rise time, noise, and bandwidth configurations and noise condition
- Use both LD and Li₂MoO₄
- 0.5 10⁻⁴ ckky in the reach with modest improvement and higher SF and Bessel cutoff
- Confirm performances with optical fibers or intense sources

Isotope & crystal procurement

- CUPID Baseline : ¹⁰⁰Mo (Isotope JSC) and crystal grower (NIIC) are Russian
 - both activities are currently suspended due to current geopolitical situation
- Isotope alternative vendor: Urenco (Netherland), producer of stable isotopes in Eu
 - test facility for ¹⁰⁰Mo production on a commercial scale in progress independently from our needs (medical applications)

- Crystals alternatives vendor:
 - Under test: 6 Li₂MoO₄ natural crystals grown by Ningbo University (China) + 2 by SICCAS (China).
 - 2 crystals tested in a short run in 2021 compliant with our requirements
 - Need certification of capability to produce radio-clean crystals
 - Alternative vendors in US (RMD) and France

NTD, heaters, LDs

- Si-heaters and NTD thermistors are a robust technology from predecessors, both for crystals and light detectors readout
 - Optimization of size, geometry and absorber coupling to further improve LDs timing and S/N
- Light Detectors: Ge wavers with SiO Anti-Reflective coating
 - particle discrimination (<100 eV RMS & >90% absorption efficiency required large safety margin)

NTD, heaters, LDs

- Si-heaters and NTD thermistors are a robust technology from predecessors, both for crystals and light detectors readout
 - Optimization of size, geometry and absorber coupling to further improve LDs timing and S/N
- Light Detectors: Ge wavers with SiO Anti-Reflective coating
 - pile-up rejection (< 170 μ s amplitude-averaged timing resolution required)

Detector Structure

- The challenge:
 - integrate LD without adding complexity
 - address weak points in CUORE design (e.g. reduce time needed for assembly despite higher number of detectors, cleaning of parts,.)
- The solution: "gravity assisted" tower
 - no vertical constraint, stack of crystals and light detectors sitting one on top of the other (vs. rigid, fixed height structure in CUORE)
 - tunable spring at the top for vibration damping and extra rigidity during transport

Detector structure

- Same materials used in CUORE(CU, PTFE, Cu-PEN wiring)
- easy & fast assembly no screws, self-aligning structure
- loose tolerances easy to produce (laser cut of Cu sheets), easy to clean (with no special care for threads and abutment surfaces)
- better wiring integration

Thermal & vibrational validation ongoing

Crystal from BINGO, CROSS, INFN, China

Muon veto & neutron shield

- CUPID
- Muons and neutrons induced background is negligible in CUORE but expected to be relevant in CUPID → increase in shielding and tagging required
- Both contributions are measured in CUORE:
 - high multiplicity events from muon tracks & showers constraints contribution in M1
 - high energy gamma cascades from neutron capture

Muon veto on top/side of the cryostat to intercept >90% muons \rightarrow 99%

CUORE shield: 20 cm PE(moderator) + 3 cm H₂BoO₃ (absorber) +25 cm Pb Add (10-20 cm) of moderator under study

Operate as a stand-alone subsystem and integrated offline into main event at event building level.

Cryostat upgrade

Cryostat upgrade

Data readout: FEE and DAQ

preamp

112 mm x 17

CUORE: custom-designed roomtemperature front end electronics. Raw data is stored for offline processing

 Very stable and reliable operation for 5 years → Readout scheme proven on the field

CUPID will add several challenges

- More channels (x3), hence more power, more space, more data, etc.
- Faster signals on light detectors, required for pile-up rejection

Main upgrades

- New frontend will save a factor of 2 in space
- Keep same power budget, optimizing preamps for light channels (same power, lower noise) & heat channels (lower power, same noise)
- Reduce wiring capacitance to reduce input RC time constant
- New board merges DAQ (24-bit ADCs, 25ksps sampling rate for channels) + anti-aliasing filters (with 10-bit tunable cut-off up to 2.5 kHz)
- Update DAQ software and storage infrastructure to cope with increased data rate

24

Small scale prototypes already deployed in multiple facilities for R&D

Bkgd control: Li₂CO₃

- High sensitivity radio-purity screening infrastructures in Italy, US, France:
 - HPGe,ICP-MS, NAA, Surface barrier Si alpha counters
 - Cryogenic infrastructures for bolometric measurements
- Measurements ongoing: Li₂CO₃ crystal growth precursors: certify vendors

Old USSR stock -reference

sample: weight: live time: detector:	Li2CO3, MiB, CUPID, Septe 0.10006 kg 1683000 s GeMPI2	mber 202	1
radionuclide con	centrations:		
Th-232: Ra-228: Th-228:	< 4.0 mBq/kg (5 +- 1) mBq/kg	<==> <==>	< 9.9 E-10 g/g (1.2 +- 0.3) E-9 g/g
U-238: Ra-226 Th-234 Pa-234m	(4 +- 1) mBq/kg < 14 mBq/kg < 75 mBq/kg	<==> <==>	(3.1 +- 0.8) E-10 g/g < 1.2 E-9 g/g < 6.1 E-9 g/g
U-235 :	< 3.9 mBq/kg	<==>	< 6.8 E-9 g/g
К-40:	< 15 mBq/kg	<==>	< 4.9 E-7 g/g
Cs-137:	< 0.51 mBq/kg		
upper limits with uncertainties are	h k=1.645, e given with k=1 (approx.	68% CL);	
Ra-228 from Ac-2 Th-228 from Pb-2 Ra-226 from Pb-2 U-235 from U-235	28; 12 & Bi-212 & Tl-208; 14 & Bi-214; & Ra-226/Pb-214/Bi-214;		

China new vendor

<pre>sample: weight: live time: detector:</pre>	lithium carbonate, Li2CO 0.60632 kg 2863381 s GeMPI2	3, Cina,	CUPID		
radionuclide cor	ncentrations:				
Th-232: Ra-228: Th-228:	(0.8 +- 0.3) mBq/kg (0.4 +- 0.2) mBq/kg	<==> <==>	(1.9 +- 0.8) E-10 g/g (1.1 +- 0.5) E-11 g/g		
U-238: Ra-226 Th-234 Pa-234m	(3.8 +- 0.3) mBq/kg < 16 mBq/kg < 17 mBq/kg	<==> <==> <==>	(3.1 +- 0.3) E-10 g/g < 1.3 E-9 g/g < 1.4 E-9 g/g		
U-235:	< 0.5 mBq/kg	<==>	< 9 E-10 g/g		
K-40:	(38 +- 5) mBq/kg	<==>	(1.2 +- 0.2) E-6 g/g		
Cs-137:	(0.3 +- 0.1) mBq/kg				
upper limits with k=1.645, uncertainties are given with k=1 (approx. 68% CL);					
Ra-228 from Ac-228; Th-228 from Pb-212 & Bi-212 & Tl-208; Ra-226 from Pb-214 & Bi-214; U-235 from U-235;					

- Multiple vendors are being validated and compared to old USSR sample as reference
- U and Th chains are all compliant with our requests
- 40K is higher by a factor 3-5 in Chinese Li₂CO₃ w.r.t. USSR sample

Bkgd control: MoO3

MoO₃ powder: Isotopic enrichment

Table 7. Isotopic res Type 1 powder							
Gammala ID	⁹² Mo *	⁹⁴ Mo *	⁹⁵ Mo *	⁹⁶ Mo *	⁹⁷ Mo *	⁹⁸ Mo *	¹⁰⁰ Mo **
Sample ID				[%]			
M0O3_1	0,11	0,08	0,14	0,16	0,13	3,08	96,30
M0O3_2	0,11	0 <mark>,</mark> 07	0,13	0,16	0,13	3,07	96,33
M0O3_3	0,11	0,07	0,13	0,16	0,13	3,08	96,31
M0O ₃ _4	0,11	0,08	0,13	0,17	0,13	3,10	96,28

Type 2 powder

1 able 6. 150	opic results						
Cample ID	⁹² Mo *	⁹⁴ Mo *	⁹⁵ Mo *	⁹⁶ Mo *	⁹⁷ Mo *	⁹⁸ Mo *	¹⁰⁰ Mo **
Sample ID				[%]			
M0O3_1	0,02	0,01	0,02	0,02	0,07	3,7	96,2
MoO ₃ _2a	0,02	0,01	0,03	0,03	0,07	3,8	96,1
MoO ₃ _3a	0,02	0,01	0,02	0,03	0,07	3,7	96,1
M0O ₃ _4	0,02	0,01	0,02	0,03	0,07	3,8	96,1

*The uncertainty is about 5% of the given results

**The uncertainty is about 1% of the given results

*The uncertainty is about 5% of the given results

**The uncertainty is about 1% of the given results

	²³² Th [pg/g]	²³⁸ U [pg/g]	K [ng/g]
Type 1 (2-step centrifugation)	25	50	8000
Type 2 (1-step centrifugation)	<25	<10	27000

- All numbers have large systematics, basically compatible
- U and Th chains are all compliant with our requests
- 40K is very high but very effectively removed by segregation during crystal growth → CCVR test will provide final number on purification efficiency

Bkgd CCVR

- Bolometric test of crystals produced starting with different types of MoO₃ powder
- Most sensitive tool to certify compliance of precursors radio-purity and crystal growth process with our specs
- 4 crystals of each type (currently only Type 1 available) assembled in a 2x2 array with 8 light detectors for light readout and particle discrimination
- Run-time ~ 4 weeks to reach required sensitivity on U, Th and ⁴⁰K bulk and surface contaminations, cool down in progress

	Required sensitivity	Live time [days]
Th surf	4.2 nBq/cm ²	20
Th bulk	1.2 <i>μ</i> Bq/kg	20
U surf	4.5 nBq/cm ²	18
U bulk	3.7 <i>μ</i> Bq/kg	6
⁴⁰ K	1mBq/kg	-

Timeline

CUPID scenarios

- Mass: 450 kg (240 Kg) of Li₂¹⁰⁰MoO₄(¹⁰⁰Mo) for 10 yrs
- Energy resolution: 5 keV FWHM
- Background: 10-4 cts/(keV kg yr)
- Discovery sensitivity $T_{1/2} > 1.1 \times 10^{27} \text{ yr} (3\sigma)$
- Discovery sensitivity $M_{\beta\beta}$ > [12-20] meV (3 σ)
- Conservative, limited technology verification remaining

CUPID scenarios

CUPID Baseline

- Mass: 450 kg (240 Kg) of $Li_2^{100}MoO_4(^{100}Mo)$ for 10 yrs
- Energy resolution: 5 keV FWHM
- Background: 10-4 cts/(keV kg yr)
- Discovery sensitivity T_{1/2} > 1.1×10²⁷ yr (3σ)
- Discovery sensitivity $M_{\beta\beta} > [12-20] \text{ meV} (3\sigma)$
- Conservative, limited technology verification remaining

CUPID-reach can be realized within existing cryogenic setup

- Same payload as CUPID baseline
- Background: 2 10-5 cts/(keV kg yr)
- Discovery sensitivity $T_{1/2} > 2 \times 10^{27} \text{ yr} (3\sigma)$
- Discovery sensitivity $M_{\beta\beta} > [9-15] \text{ meV} (3\sigma)$

Pileup background below $\sim 1 \times 10^{-5}$ cnts/(keV kg yr).

- achieved e.g. with faster sensor: NL-NTD, KID, TES based light detectors.

Surface backgrounds from the holders reduced by a factor of ~3.

- -Baseline background budget from crystals and holders amounts to 3.6×10^{-5} cnts/(keV kg yr).
- -Could be reduced e.g. through the use of the laser machining

CUPID 1 Ton

An Inverted Hierarchy Precision measurement device across multiple isotopes or a Normal Hierarchy Explorer

- Multi-cryostat setup or large-scale dilution refrigerator (cooling power comparable to CUORE), technologically achievable (increasingly common interest in Quantum Computing)
- require full implementation of next-generation (TES or mKID) low-noise, high-bandwidth multiplexed quantum sensors (DM,QIS)
- Need to consider/verify subdominant backgrounds active gamma veto and event topology (synergy with low mass DM experiments)

Conclusions

- CUPID builds on existing and well-functioning international collaborations
 - Operational experience at LNGS for ton-scale bolometric experiment and reuse of existing infrastructure (CUORE cryostat and experimental site)
- Cost effective, timely, and leverages international investments: exceptional opportunity
- Limited technology verification remaining for CUPID baseline.
- **Data-driven background model** reaches baseline goal of bkgd~10⁻⁴ ckky.
- CUPID will explore inverted ordering ($T_{1/2} > 10^{27}$ years at 3σ , $m_{\beta\beta} \sim 12-20$ meV)
- Possibility of phased deployment and us of different isotopes in case of discovery
- Plans for CUPID-1T experiment are feasible and within technical reach of bolometer technology. CUPID baseline/reach will help understand backgrounds for CUPID-1T.

Project organisation

CUPID

All construction activities up to detector commissioning are organized in the project WBS coordinated by the Technical Coordination Board

Project paramaters

	3
<u> </u>	cupid:logo_cupid_v2_r
CUI	PID

Parameter	Value	Parameter	Value
Crystal	Li ₂ 100MoO ₄	LD light absorption	>90%
Size	45×45×45 mm³	LD energy resolution	<100 eV RMS
Number of crystals	1596	LD pileup resolution	<0.17 ms
Number of light detectors	1710	LD risetime*resolution	<1 msec*80 eV-FWHM
Detector mass	450 kg	Muon detector efficiency	>90%
Enrichment	95%	Crystal radiopurity	CUPID-Mo
¹⁰⁰ Mo mass	240 kg	Surface radiopurity	CUORE
Energy resolution	5 keV	Cu, PTFE radiopurity	CUORE
Light yield (β)	0.3 keV/MeV	DAQ bandwidth, storage	~10×CUORE
Background index	10 ⁻⁴ counts/(kg*keV*year)	Calibration system	External (CUORE)
Selection Efficiency	90%	Cryogenics	CUORE

Background control and reduction

CUPID Sensitivity

Parameter	CUPID baseline	$\operatorname{CUPID-reach}$	CUPID-1T
Crystal	${\rm Li_2^{100}MoO_4}$	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$
Detector mass (kg)	450	450	1871
100 Mo mass (kg)	240	240	1000
Energy resolution FWHM (keV)	5	5	5
Background index (counts/(keV·kg·yr))	10^{-4}	2×10^{-5}	$5 imes 10^{-6}$
Containment efficiency	78%	78%	78%
Selection efficiency	90%	90%	90%
Livetime (years)	10	10	10
Half-life exclusion sensitivity (90% C.L.)	$1.4 imes 10^{27} { m y}$	$2.2 \times 10^{27} \text{ y}$	$9.1 \times 10^{27} \text{ y}$
Half-life discovery sensitivity (3σ)	$1 \times 10^{27} { m y}$	$2 \times 10^{27} \text{ y}$	$8 \times 10^{27} { m y}$
$m_{\beta\beta}$ exclusion sensitivity (90% C.L.)	$1017~\mathrm{meV}$	8.414 meV	$4.16.8~\mathrm{MeV}$
$m_{\beta\beta}$ discovery sensitivity (3 σ)	$1220~\mathrm{meV}$	$915~\mathrm{meV}$	$4.47.3~\mathrm{meV}$

CUPID Science Program

- Search for 0vββ decay
- 2νββ spectral shape analysis:
 - decays to excited states
 - Single State vs Higher State Dominance
 - CPT violation and Lorentz invariance
 - Majoron emission
- Topological analysis:
 - electric charge conservation
 - Pauli exclusion principle
 - Tri-nucleon decay and baryon number conservation
- Low energy searches:
 - direct dark matter detection
 - supernova neutrinos via coherent scattering
 - solar axion searches

Organisational structure

LNGS Laboratory

120 km from Rome

- ~ 3600 m.w.e. deep
- μ flux: ~ 3x10⁻⁸/(s cm²)
- γ flux: ~ 0.73/(s cm²)

neutrons: 4x10⁻⁶ n/(s cm²) below 10 MeV

n²) below 10 MeV

Y beam

