Calculations of the nuclear matrix elements for double- β decay: an overview of the present status

Luigi Coraggio

Dipartimento di Matematica e Fisica - Università della Campania "Luigi Vanvitelli" Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

> Double-Beta Decay: the Road to Normal Hierarchy Sensitivity June 6th, 2022 - ISCTE, Lisboa

 Università Dipartimento di Mate degli Studi della Campania Laigi Fassitelli

Luigi Coraggio

DBD2022

Acknowledgements

- University of Campania and INFN Naples Unit
 - G. De Gregorio
 - A. Gargano
 - N. Itaco
 - L. C.
- INFN Pisa Unit
 - M. Viviani
- IPHC Strasbourg
 - F. Nowacki

- GSI
 - R. Mancino
- RIKEN SNP Laboratory
 - T. Fukui
- Peking University
 - F. R. Xu
 - Z. Chen
- SCNU Guangzhou
 - Y. Z. Ma

The neutrinoless double β -decay

The detection of the $0\nu\beta\beta$ decay is nowadays one of the main targets in many laboratories all around the world, since its detection would correspond to a violation of the conservation of the leptonic number, and may provide more informations on the nature of the neutrinos and its effective mass

• The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element $M^{0\nu}$, which relates the parent and grand-daughter wave functions via the decay operator.

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left|g_A^2 \frac{\langle m_\nu \rangle}{m_\theta}\right|^2$$

• The calculation of $M^{0\nu}$ links $\left[T^{0\nu}_{1/2}\right]^{-1}$ to the neutrino effective mass $\langle m_{\nu} \rangle = |\sum_{k} m_{k} U_{ek}^{2}|$ (light-neutrino exchange)

 Università Dipatimento di Matonatica e Fait degli Studi della Campania Laigi Faceduli

The calculation of $M^{0\nu}$

The matrix elements $M_{\alpha}^{0\nu}$ are defined as follows:

$$M_{\alpha}^{0\nu} = \sum_{k} \sum_{j_{p} j_{p'} j_{n} j_{n'}} \langle f | a_{p}^{\dagger} a_{n} | k \rangle \langle k | a_{p'}^{\dagger} a_{n'} | i \rangle \left\langle j_{p} j_{p'} \mid \tau_{1}^{-} \tau_{2}^{-} \Theta_{\alpha}^{k} \mid j_{n} j_{n'} \right\rangle$$

with $\alpha = (GT, F, T)$

$$\begin{aligned} \Theta_{12}^{GT} &= \vec{\sigma}_1 \cdot \vec{\sigma}_2 H_{GT}(r) \\ \Theta_{12}^F &= H_F(r) \\ \Theta_{12}^T &= [3(\vec{\sigma}_1 \cdot \hat{r})(\vec{\sigma}_1 \cdot \hat{r}) \\ &- \vec{\sigma}_1 \cdot \vec{\sigma}_2] H_T(r) \end{aligned}$$

 H_{α} depends on the energy of the initial, final, and intermediate states:

$$H_{\alpha}(r) = \frac{2R}{\pi} \int_0^{\infty} \frac{j_{\alpha}(qr)h_{\alpha}(q^2)qdq}{q + E_k - (E_i + E_f)/2}$$

Actually, because of the computational complexity, the energies of the intermediate states are replaced by an average value:

$$E_k - (E_i + E_f)/2 \rightarrow \langle E \rangle$$

 $\sum \langle f | a_p^{\dagger} a_n | k \rangle \langle k | a_{p'}^{\dagger} a_{n'} | i \rangle = \langle f | a_p^{\dagger} a_n a_{p'}^{\dagger} a_{n'} | i \rangle$

The closure approximation

Consequently, the expression of the neutrino potentials becomes:

$$H_{lpha}(r) = rac{2R}{\pi} \int_{0}^{\infty} rac{j_{lpha}(qr)h_{lpha}(q^2)qdq}{q+ < E >}$$

The matrix elements $M_{\alpha}^{0\nu}$ are then defined, within the closure approximation, as follows:

$$M_{\alpha}^{0\nu} = \sum_{j_n j_{n'} j_p j_{p'}} \langle f | a_p^{\dagger} a_n a_{p'}^{\dagger} a_{n'} | i \rangle \left\langle j_p j_{p'} \mid \tau_1^- \tau_2^- \Theta_{\alpha} \mid j_n j_{n'} \right\rangle$$

The matrix elements $\langle f | a_p^{\dagger} a_n a_{p'}^{\dagger} a_{n'} | i \rangle$ are the two-body transition-density matrix elements, and the Gamow-Teller (*GT*), Fermi (*F*), and tensor (*T*) operators:

The closure approximation works since $q \approx 100-200$ MeV, while model-space excitation energies $E_{exc} \approx 10$ MeV

Sen'kov and Horoi (*Phys. Rev. C* 88, 064312 (2013)) have evaluated the non-closure vs closure approximation within 10%

$0\nu\beta\beta$ decay: short-range correlations

Nuclear structure calculations provide non-correlated wave functions Φ , namely Slater determinants of unperturbed basis states, which do not vanish in the short-range region of the nuclear potential

The short-range repulsion of V^{NN} makes the "real" correlated wave function Ψ to approach to zero as the internucleon distance diminishes

Short-range correlations (SRC) are then introduced to soften the $0\nu\beta\beta$ decay operator, consistently with the renormalization of V^{NN}

- Calculation of the defect wave functions (*G*-matrix renormalization)
- Jastrow-type functions (the most popular ones)
- Unitary Correlation Operator Method (UCOM)

$0\nu\beta\beta$ decay: LO contact transition operator

Within the framework of ChEFT, there is the need to introduce a LO short-range operator, which is missing in standard calculations of $M^{0\nu}s$, to renormalize the operator and make it independent of the ultraviolet regulator

V. Cirigliano et al., Phys. Rev. Lett. 120 202001 (2020)

$$M_{sr}^{0\nu} = \frac{1.2A^{1/3}\,\text{fm}}{g_A^2} \langle 0_f^+ | \sum_{n,m} \tau_m^- \tau_n^- \mathbf{1} \left[\frac{4g_\nu^{NN}}{\pi} \int j_0(qr) \, f_S(p/\Lambda_S) \, q^2 \, dq \right] |0_i^+ \rangle$$

The open question is the determination of the low-energy constant $g_
u^{
m NN}$

A recent attempt to fit g_{ν}^{NN} by computing the transition amplitude of the $nn \rightarrow ppe^-e^-$ process using nuclear *NN* and *NNN* interactions has shown that $M_{sr}^{0\nu}$ enlarges the $M^{0\nu}$ for ⁴⁸Ca $0\nu\beta\beta$ decay

R. Wirth et al., Phys. Rev. Lett. 127 242502 (2021)

6 L 🗼 L+S EM(1.8/2.0) EMN(2.0) LNL(2.0) $\Delta N^2 LO_{co}(2.0)$ ⁸He →⁸Be AN²LOco(m) EM(1.8/2.0) EMN(2.0) 04 ٥. LNL(2.0) $\Delta N^2 LO_{co}(2.0)$ ٥4 AN²LOco(∞) IT-NCSM 48Ca →48Ti IM-GCM $EM(1.8/2.0)(e_{Max} = 6)$ $EM(1.8/2.0)(e_{Max} = 8)$ ۵. 0 $EM(1.8/2.0)(e_{Max} = 10)$ JEN EM(1.8/2.0)(extra.) 0 🌢 I Fisica Nacinare 8 $M^{0\nu}$

⁶He →⁶Be

The study of the many-body Schrödinger equation, for system with A > 4, needs the introduction of truncations and approximations, and follows two main approaches:

Mean-field and collective models

- Energy Density Functional (EDF)
- Quasiparticle Random-Phase Approximation (QRPA)
- Interacting Boson Model IBM

Microscopic approaches

• ab initio methods

- No-Core Shell Model (NCSM)
- Coupled-Cluster Method (CCM)
- In-Medium Similarity Renormalization Group (IMSRG)
- Self-Consistent Green's Function approach (SCGF)
- Nuclear Shell Model

The many-body problem

- Mean-field and collective models operate a drastic cut of the nuclear degrees of freedom, the computational problem is alleviated
- Their effective Hamiltonian *H*_{eff} cannot be derived from realistic nuclear forces and depend from parameters fitted to reproduce a selection of observables
- This reduces the predictive power, that is crucial to search "new physics"

- The degrees of freedom of *ab initio* methods and SM Hamiltonians are the microscopic ones of the single nucleons (very demanding calculations)
- Consequently, they may operate starting from realistic nuclear forces
- These features enhance the predictiveness and the calculated wave functions are more reliable

Dipationnto di Matematica e Fuica nia

The QRPA

The quasiparticle random-phase approximation is based on the concept of "pairing" among the nucleons.

Particles are substituted with "quasiparticles".

- Advantage → The dimension of the hamiltonian does not scale rapidly with the mass number A as with the shell model.
- Shortcoming → Results are strongly dependent on the choice of the free renormalization-parameter g_{pp} (g_{ph} is determined from experiment), that is fixed to reproduce both spectroscopy and GT transitions

In the interacting boson model identical nucleons are paired so to generate bosons:

- $L = 0 \rightarrow s$ -boson
- $L = 2 \rightarrow d$ -boson

- Advantage → The computational complexity is drastically simplified
- Shortcoming → The configuration space is strongly reduced

The nuclear shell model

The nucleons are subject to the action of a mean field, that takes into account most of the interaction of the nucleus constituents. Only valence nucleons interact by way of a residual two-body potential, within a reduced model space.

- Advantage → It is a microscopic and flexible model, the degrees of freedom of the valence nucleons are explicitly taken into account.
- Shortcoming → High-degree computational complexity.

Ab initio methods: β -decay in medium-mass nuclei

Coupled-cluster method CCM and in-medium SRG (IMRSG) calculations have recently performed to overcome the quenching problem g_A to reproduce β -decay observables in heavier systems

P. Gysbers et al., Nat. Phys. **15** 428 (2019)

Coupled-Cluster Method

- Advantage → The degrees of freedom of all constituent nucleons are included, the number of correlations among nucleons is enormous
- Shortcoming → Highest-degree of computational complexity, the comparison with spectroscopic data is not yet satisfactory

Nuclear structure calculations

 The spread of nuclear structure calculations evidences inconsistencies among results obtained with different models

Figure courtesy from Javier Menéndez

The quenching of g_A

A major issue in the calculation of quantities related to GT transitions, is the need to quench the axial coupling constant g_A by a factor q in order to reproduce data.

G. Martínez Pinedo et al., Phys. Rev. C 53, R2602 (1996)

J. Barea, J. Kotila, and F. lachello, Phys. Rev. C **91**, 034304 (2015)

The introduction of quenching factor may largely affect the value of the half-life $T_{1/2}^{0\nu}$, since the latter would be enlarged by a factor q^{-4} .

That is why experimentalists are deeply concerned about q, its value has a strong impact on the sensitivity of the experimental apparatus.

Ve Università Dir degli Studi della Campania Laigi Fassibili The two main sources of the need of a quenching factor *q* may be identified as:

Nucleon internal degrees of freedom

Nucleons are not point-like particles \Rightarrow contributions to the free value of g_A come from two-body meson exchange currents:

Truncation of the nuclear configurations

Nuclear models operate a cut of the nuclear degrees of freedom in order to diagonalize the nuclear Hamiltonian ⇒ effective Hamiltonians and decay operators must be considered to account for the neglected configurations in the nuclear wave function

Two-body meson exchange currents

A powerful approach to the derivation of two-body currents (2BC) is to resort to effective field theories (EFT) of quantum chromodynamics.

In such a way, both nuclear potentials and 2BC may be consistently constructed, since in the EFT approach they appear as subleading corrections to the one-body Gamow-Teller (GT) operator $\sigma\tau^+$.

Nuclear Hamiltonian				
	2N Force	3N Force	4N Force	
${f LO}\ (Q/\Lambda_\chi)^0$	$\times \vdash \!$			
$\frac{\mathbf{NLO}}{(Q/\Lambda_\chi)^2}$	XMK MIX			
NNLO $(Q/\Lambda_{\chi})^3$		+ - -X		
${f N^3 LO} \ (Q/\Lambda_\chi)^4$	X04 K1=1-	K4.#X	†"]∧["] •	

The impact of 2BC on the calculated β -decay properties has been investigated in terms of *ab initio* methods

β -decay in light nuclei

GT nuclear matrix elements of the β -decay of *p*-shell nuclei have been calculated with Green's function Monte Carlo (GFMC) and no-core shell model (NCSM) methods, including contributions from 2BC

S. Pastore et al., Phys. Rev. C 97 022501(R) (2018)

The contribution of 2BC improves systematically the agreement between theory and experiment

niversità *Dipartimento di Matematica e* gli Studi Ila Campania 20 Maaria M

INF

Effective operators for nuclear models

The truncation of the Hilbert space of nuclear configuration implies the need of effective Hamiltonians and decay operators $H_{\text{eff}}, \Theta_{\text{eff}}$ $H_{\text{eff}}, \Theta_{\text{eff}}$ must take into account all the degrees of freedom not explicitly considered in the truncated model space

Two alternative approaches

- phenomenological: the parameters defining *H*_{eff},⊖_{eff} are fitted to data (SP energies, TBME, quenching factors, effective charges, etc.)
- microscopic:

 V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$, $\Theta_{\rm eff}$

Definition

The eigenvalues and Θ_{eff} matrix elements of model-space wave functions should be equal to those of the original H, Θ of the full Hilbert-space wave functions, respectively. This may be provided by a similarity transformation Ω of the full Hilbert-space hamiltonian H onto the effective one H_{eff}

The effective operators for decay amplitudes

- Ψ_{α} eigenstates of the full Hamiltonian *H* with eigenvalues E_{α}
- Φ_{α} eigenvectors obtained diagonalizing H_{eff} in the model space P and corresponding to the same eigenvalues E_{α}

 $\Rightarrow |\Phi_{lpha}
angle = P |\Psi_{lpha}
angle$

Obviously, for any decay-operator ⊖:

 $\langle \Phi_{\alpha} | \Theta | \Phi_{\beta} \rangle \neq \langle \Psi_{\alpha} | \Theta | \Psi_{\beta} \rangle$

We then require an effective operator Θ_{eff} defined as follows

$$\Theta_{\mathrm{eff}} = \sum_{lphaeta} \ket{\Phi_lpha}ig\langle \Psi_lpha | \Theta | \Psi_etaig
angle ig\langle \Phi_eta |$$

Consequently, the matrix elements of Θ_{eff} are

$$\langle \Phi_{lpha} | \Theta_{
m eff} | \Phi_{eta}
angle = \langle \Psi_{lpha} | \Theta | \Psi_{eta}
angle$$

This means that the parameters characterizing Θ_{eff} are renormalized with respect to $\Theta \Rightarrow g_A^{\text{eff}} = q \cdot g_A \neq g_A$

IFŃ

Realistic shell-model

The nuclear shell model is a microscopic one, then it is possible to construct, within the many-body theory, effective Hamiltonians and decay operators starting from realistic nuclear potentials

Realistic shell model (RSM)

- Choose a realistic NN potential (NNN)
- Penormalize its short range correlations
- Identify the model space better tailored to study the physics problem
- Derive the effective shell-model Hamiltonian and consistently effective shell-model operators for decay amplitudes, by way of the many-body perturbation theory
- Calculate the observables (energies, e.m. transition probabilities, β-decay amplitudes...), using only theoretical SP energies, two-body matrix elements, and effective SM operators.

The effective shell-model Hamiltonian

We start from the many-body Hamiltonian *H* defined in the full Hilbert space:

$$H = H_0 + H_1 = \sum_{i=1}^{A} (T_i + U_i) + \sum_{i < j} (V_{ij}^{NN} - U_i)$$
$$\begin{pmatrix} PHP & PHQ \\ \hline QHP & QHQ \end{pmatrix} \xrightarrow{\mathcal{H} = \Omega^{-1} H\Omega} \begin{pmatrix} PHP & PHQ \\ \hline 0 & QHQ \end{pmatrix}$$

$$H_{\text{eff}} = P\mathcal{H}P$$
Suzuki & Lee $\Rightarrow \Omega = e^{\omega}$ with $\omega = \left(\begin{array}{c|c} 0 & 0 \\ \hline Q\omega P & 0 \end{array} \right)$

$$H_{1}^{\text{eff}}(\omega) = PH_{1}P + PH_{1}Q \frac{1}{\epsilon - QHQ}QH_{1}P - PH_{1}Q \frac{1}{\epsilon - QHQ}\omega H_{1}^{\text{eff}}(\omega)$$

DBD2022

Luigi Coraggio

Istrato Racinesis di Fisica Naciona

The perturbative approach to the shell-model H^{eff}

Exact calculation of the \hat{Q} -box is computationally prohibitive for manybody system \Rightarrow we perform a perturbative expansion

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$

The effective SM operators for decay amplitudes

Diagrams up 2nd order of the perturbative expansion of the effective decay operator Θ_{eff} :

Our recipe for realistic shell model

• Input V_{NN} : V_{low-k} derived from the high-precision NN CD-Bonn potential with a cutoff: $\Lambda = 2.6 \text{ fm}^{-1}$.

- *H*_{eff} obtained calculating the Q̂ box up to the 3rd order in perturbation theory.
- Effective operators are consistently derived by way of the the MBPT
- Short-range correlations of the nuclear wave functions for the calculation of the nuclear matrix elements for $0\nu\beta\beta$ decay are obtained from the $V_{low=k}$ renormalization procedure

The choice of the NN potential

P. Gysbers et al., arXiv:1903.00047 (2019)

A $V_{\text{low-}k}$ potential from the CD-Bonn *NN* with a "hard cutoff" $\Lambda = 2.6$ fm⁻¹ has been chosen to reduce the impact of GT two-body currents

Nuclear models and predictive power

RSM calculations, starting from the CD-Bonn potential for spectroscopic, spin-, and spin-isospin dependent observables of ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, and ¹³⁶Xe ↓ Check RSM approach calculating GT strengths and 2*νββ*-decay

$$\begin{bmatrix} T_{1/2}^{2\nu} \end{bmatrix}^{-1} = G^{2\nu} \left| M_{\rm GT}^{2\nu} \right|^2$$
 where

$$M_{2\nu}^{\rm GT} = \sum_{n} \frac{\langle 0_{f}^{+} || \vec{\sigma} \tau^{-} || 1_{n}^{+} \rangle \langle 1_{n}^{+} || \vec{\sigma} \tau^{-} || 0_{i}^{+} \rangle}{E_{n} + E_{0}}$$

IEŃ

Spectroscopic properties

Spectroscopic properties

Università Dipartimento di Matematica e Fisic degli Studi della Campania Laigi Fasebelli

GT⁻ running sums

Università degli Studi della Campania Laigi Fascitali

Luigi Coraggio

DBD2022

$2\nu\beta\beta$ nuclear matrix elements

Red symbols: bare GT operator

Decay	Expt.	Bare	
$ \begin{array}{c} {}^{48}{\rm Ca}_1 \rightarrow {}^{48}{\rm Ti}_1 \\ {}^{76}{\rm Ge}_1 \rightarrow {}^{76}{\rm Se}_1 \\ {}^{82}{\rm Se}_1 \rightarrow {}^{82}{\rm Kr}_1 \\ {}^{130}{\rm Te}_1 \rightarrow {}^{130}{\rm Xe}_1 \\ {}^{136}{\rm Xe}_1 \rightarrow {}^{136}{\rm Ba}_1 \\ {}^{100}{\rm Mo}_1 \rightarrow {}^{100}{\rm Ru}_1 \end{array} $	$\begin{array}{c} 0.038 \pm 0.003 \\ 0.113 \pm 0.006 \\ 0.083 \pm 0.004 \\ 0.031 \pm 0.004 \\ 0.0181 \pm 0.0007 \\ 0.224 \pm 0.002 \end{array}$	0.030 0.304 0.347 0.131 0.0910 0.896	
$^{100}Mo_1 \rightarrow ^{100}Ru_2$	0.182 ± 0.006	0.479	
Experimental data from Thies et al, Phys. Rev. C 86, 044309 (2012); A. S. Barabash, Universe 6, (2020)			

 Università Dipatinesto di Meteoratica e Fisica degli Studi
 della Compania Lagi Fosciali

$2\nu\beta\beta$ nuclear matrix elements

- LC, L. De Angelis, T. Fukui, A. Gargano, and N. Itaco, Phys. Rev. C 95, 064324 (2017).
- LC, L. De Angelis, T. Fukui, A.
 <u>Gargano</u>, N. Itaco, and F. Nowacki, Phys. Rev. C **100**, 014316 (2019).

Red symbols: bare GT operator Black symbols: effective GT operator

Decay	Expt.	Eff.	
$^{48}Ca_1 \rightarrow ^{48}Ti_1$	0.038 ± 0.003	0.026	
$^{76}\text{Ge}_1 \rightarrow ^{76}\text{Se}_1$	0.113 ± 0.006	0.104	
$^{82}Se_1 \rightarrow ^{82}Kr_1$	0.083 ± 0.004	0.109	
$^{130}\text{Te}_1 \rightarrow ^{130}\text{Xe}_1$	0.031 ± 0.004	0.061	
130 Xe ₁ \rightarrow 130 Ba ₁	0.0181 ± 0.0007	0.0341	
$^{100}Mo_1 \rightarrow ^{100}Ru_1$	0.224 ± 0.002	0.205	
$^{100}Mo_1 \rightarrow ^{100}Ru_2$	0.182 ± 0.006	0.109	
xperimental data from Thies et al, Phys. Rev. C 86, 044309 (2012); A. S. Barabash, Universe 6, (2020)			

RSM calculations of $M^{0\nu}$

Earliest RSM calculation of $M^{0\nu}$ performed by Kuo and coworkers for ⁴⁸Ca decay (*Phys. Lett. B* **162** 227 (1985))

- SM effective TBMEs and decay operator from Paris and Reid potential
- Brueckner G-matrix and 2nd-order MBPT
- SRC derived through the calculation of the defect function

Fig. 1. Diagrams of $H_{\beta\beta}^{\text{eff}}$; virtual Majorana neutrinos are represented by dotted lines, nucleon G-matrix interaction by wavy lines, and nucleons outside the model space P by railed lines.

M^{0ν} for ⁷⁶Ge, ⁸²Se, and ⁴⁸Ca decay by Holt and Engel (*Phys. Rev. C* **87** 064315 (2013), *Phys. Rev. C* **88** 045502 (2014))

- Wave functions calculated with GCN28.50, JUN45, and GXPF1A Hamiltonians
- SM decay operator from N³LO (EM) potential, V_{low-k} renormalization, and 3rd-order MBPT

Jastrow-type short-range correlations

 $M^{0\nu}$ for ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, and ¹³⁶Xe decay by our collaboration (*Phys. Rev. C* **101** 044315 (2020); *Phys. Rev. C* **105** 034312 (2022))

- H_{eff} and effective decay operators from CD-Bonn potential, V_{low-k} renormalization, and 3rd-order MBPT
- V_{low-k} -transformation SRC
- Three-body correlations contributions included to account for the Pauli-blocking effect

Luigi Coraggio

DBD2022

RSM calculations of $M^{0\nu}$: results

Decay	bare operator	Θ_{eff}	
⁴⁸ Ca → ⁴⁸ Ti	0.53	0.30	-40%
$^{76} ext{Ge} ightarrow ^{76} ext{Se}$	3.35	2.66	-20%
$^{82} ext{Se} ightarrow ^{82} ext{Kr}$	3.30	2.72	-20%
$^{100}\mathrm{Mo} ightarrow ^{100}\mathrm{Ru}$	3.96	2.24	-40%
$^{130} ext{Te} ightarrow ^{130} ext{Xe}$	3.27	3.16	-3%
136 Xe $ ightarrow$ 136 Ba	2.47	2.39	-3%

 Results obtained with the effective shell-model operator are relatively reduced with respect those with bare operator: quenching effect is much smaller than the two-neutrino double-β decay

Decay	q	bare operator	quenched operator	
⁴⁸ Ca → ⁴⁸ Ti	0.83	0.53	0.40	-20%
$^{76} ext{Ge} ightarrow ^{76} ext{Se}$	0.58	3.35	1.41	-60%
$^{82} ext{Se} ightarrow ^{82} ext{Kr}$	0.56	3.30	1.32	-60%
$^{100}\mathrm{Mo} ightarrow {}^{100}\mathrm{Ru}$	0.48	3.96	1.33	-70%
$^{130} ext{Te} ightarrow ^{130} ext{Xe}$	0.68	3.27	1.78	-50%
$^{136} ext{Xe} ightarrow ^{136} ext{Ba}$	0.61	2.47	1.15	-50%

The calculation of $M^{0\nu}$: results

To rule out the Inverted Hierarchy of neutrino mass spectra, the upper bound of neutrino effective mass should be $\langle m_{\beta\beta} \rangle < 1.84 \pm 1.3 \text{ meV}$. We could then evaluate the lower bound of the half lives of the decay processes, accordingly to our calculated $M^{0\nu}$

$$\mathcal{T}_{1/2}^{0\nu} \text{ (in yr)} \xrightarrow{76}_{Ge} \xrightarrow{76}_{Se} \overset{82}{_{Se}} \xrightarrow{82}_{Kr} \overset{100}{_{Mo}} \xrightarrow{100}_{Mo} \xrightarrow{100}_{Ru} \overset{130}{_{Te}} \xrightarrow{130}_{Xe} \overset{136}{_{Xe}} \xrightarrow{136}_{Se} \overset{136}{_{Ke}} \xrightarrow{136}_{Ba} \xrightarrow{136}_{Ke} \xrightarrow{136}$$

⁴⁸Ca $2\nu\beta\beta$ -decay with chiral 2- and 3-body potentials

Preliminary results for the $2\nu\beta\beta$ -decay of ⁴⁸Ca, employing Entem-Machleidt N³LO 2NF plus N²LO 3NF

Conclusions and Outlook

- Microscopic approaches to the nuclear many-body problem may get rid of the so-called "quenching puzzle" in the study of β decay, with and without the emission of neutrinos
- This goal may be achieved by focusing theoretical efforts on two main issues:
 - a) improving our knowledge of nuclear forces;
 - b) estimation of the theoretical error from the application of many-body methods.
- Benchmark calculations with different approaches to the calculation of $0\nu\beta\beta$ nuclear matrix elements should lead to narrowing the spread among the theoretical results

Backup slides

Luigi Coraggio DBD2022

The effective SM operators for decay amplitudes

Any shell-model effective operator may be derived consistently with the \hat{Q} -box-plus-folded-diagram approach to H_{eff}

It has been demonstrated that, for any bare operator Θ , a non-Hermitian effective operator Θ_{eff} can be written in the following form:

$$\Theta_{\rm eff} = (P + \hat{Q}_1 + \hat{Q}_1 \hat{Q}_1 + \hat{Q}_2 \hat{Q} + \hat{Q} \hat{Q}_2 + \cdots)(\chi_0 + \chi_1 + \chi_2 + \cdots) ,$$

where

$$\hat{Q}_m = rac{1}{m!} rac{d^m \hat{Q}(\epsilon)}{d\epsilon^m} \Big|_{\epsilon=\epsilon_0} \; ,$$

 ϵ_0 being the model-space eigenvalue of the unperturbed Hamiltonian H_0

state and a manufacture of Meteoretical Price K. Suzuki and R. Okamoto, Prog. Theor. Phys. 93, 905 (1995)

The effective SM operators for decay amplitudes

The χ_n operators are defined as follows:

$$\begin{split} \chi_{0} &= (\hat{\Theta}_{0} + h.c.) + \Theta_{00} , \\ \chi_{1} &= (\hat{\Theta}_{1}\hat{Q} + h.c.) + (\hat{\Theta}_{01}\hat{Q} + h.c.) , \\ \chi_{2} &= (\hat{\Theta}_{1}\hat{Q}_{1}\hat{Q} + h.c.) + (\hat{\Theta}_{2}\hat{Q}\hat{Q} + h.c.) + \\ & (\hat{\Theta}_{02}\hat{Q}\hat{Q} + h.c.) + \hat{Q}\hat{\Theta}_{11}\hat{Q} , \\ & \cdots \end{split}$$

and

$$\hat{\Theta}(\epsilon) = P\Theta P + P\Theta Q \frac{1}{\epsilon - QHQ} QH_1 P$$
$$\hat{\Theta}(\epsilon_1; \epsilon_2) = PH_1 Q \frac{1}{\epsilon_1 - QHQ} \times Q\Theta Q \frac{1}{\epsilon_2 - QHQ} QH_1 P$$

$$\hat{\Theta}_{m} = \frac{1}{m!} \frac{d^{m}\hat{\Theta}(\epsilon)}{d\epsilon^{m}} \bigg|_{\epsilon=\epsilon_{0}}$$
$$\hat{\Theta}_{nm} = \frac{1}{n!m!} \frac{d^{n}}{d\epsilon_{1}^{n}} \frac{d^{m}}{d\epsilon_{2}^{m}} \hat{\Theta}(\epsilon_{1};\epsilon_{2}) \bigg|_{\epsilon_{1,2}=\epsilon_{0}}$$

DBD2022

Perturbative properties

Università Dipartimento di Matomatica e legli Studi Iella Compania

Luigi Coraggio

DBD2022

Perturbative properties of the 00ν effective operator

Convergence with respect the number of intermediate states

Order-by-order convergence

Contributions from pairs of decaying neutrons with given J^{π} to $M_{GT}^{0\nu}$ for ⁴⁸Ca $0\nu\beta\beta$ decay. The bars filled in blue corresponds to the results obtained with Θ_{eff} calculated a 3rd order in perturbation theory, those in dashed blue are calculated at 2nd order

Perturbative behavior of the effective $0\nu\beta\beta$ operator

single- β decay operator

¹³⁰Te

136 Xf

• M⁰

■ M_C

Pade` [2|1]

• M⁰

■ M⁰_{GT}

▲ M_F⁰

Pade` [2]1]

A.

Luigi Coraggio

perturbative order

DBD2022

Blocking (Pauli) effect: as for the one-body operators, the filling of the model-space orbitals by the valence nucleons affects the effective $0\nu\beta\beta$ operator:

Present shell model codes cannot manage the contributions of these three-body correlations diagrams to the effective $0\nu\beta\beta$ -decay operator

The blocking effect

Many-body correlations are then taken into account by calculating three-body correlations diagrams and summing over one of the incoming/outcoming nucleons

We obtain a density-dependent two-body $0\nu\beta\beta$ effective operator

$$\langle (j_a j_b)_J | O^lpha | (j_c j_d)_J
angle = \sum_{m,J'}
ho_m rac{\hat{J'}^2}{\hat{J}^2} \langle [(j_a j_b)_J, j_m]_{J'} | O^A | [(j_c j_d)_J, j_m]_{J'}
angle$$

Ab initio vs NSM calculations

 Università degli Studi defla Campania Ligi Fasetdi

Shell model calculations of $M^{0\nu}$

- 1 J. Menéndez, J. Phys. G 45, 014003 (2018).
- 2 A. Neacsu and M. Horoi, Phys. Rev. C 91, 024309 (2015), R. A. Sen'kov and M. Horoi, Phys. Rev. C 88, 064312 (2013), R. A. Sen'kov, M. Horoi, and B. A. Brown, Phys. Rev. C 89, 054304 (2014).
- 3 J. D. Holt and J. Engel, Phys. Rev. C 87, 064315 (2013), A. A. Kwiatowski et al., Phys. Rev C 89, 045502 (2014).
- 4 LC, A. Gargano, N. Itaco, R. Mancino, and F. Nowacki, Phys. Rev. C 101 044315 (2020).

