Neutrino physics overview

Mariam Tórtola IFIC, CSIC/Universitat de València

Neutrino oscillations overview

Mariam Tórtola IFIC, CSIC/Universitat de València

Outline

Current status of the standard three-neutrino framework

- ⇒ based on **de Salas et al, JHEP 02 (2021) 071[arXiv:2006.11237]**
- \Rightarrow updated with the results presented in Neutrino 2020 Conference
- \Rightarrow figures and χ^2 tables publicly available at the website:

https://globalfit.astroparticles.es/

https://doi.org/10.5281/zenodo.4593330

See also: Esteban et al. (NuFIT), Lisi et al.

 \Rightarrow Discussion of results presented in Neutrino 2022

Future prospects in neutrino oscillations:

 \Rightarrow near future & next generation neutrino oscillation experiments

Beyond the standard three-neutrino scenario:

 \Rightarrow can BSM physics improve oscillation fits?

The three-flavour v picture

neutrino mixing

$$U_{3\times3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

@MariamTortola (IFIC-CSIC/UValencia)

Neutrino mixing and 0vßß

If neutrinoless double beta decay is mostly due to the exchange of light Majorana neutrinos:

$$\Gamma_{0\nu\beta\beta} = G^{0\nu} |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$

Effective Majorana neutrino mass:

$$\left\langle m_{\beta\beta} \right\rangle = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$$

 \Rightarrow sensitive to Majorana phases α_i

Three-neutrino mixing

Currently, we have evidence for neutrino oscillations in atmospheric, solar, reactor and accelerator experiments

Each type of experiment is sensitive to different mixing parameters:

$$U_{3\times3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

atmospheric + SBL reactor + solar + contract a solar + contract

Experimental data

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

Neutrino oscillation parameters

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

parameter	best fit $\pm 1\sigma$	3σ range		Bari group analyses
$\Delta m_{21}^2 \ [10^{-5} \mathrm{eV}^2]$	$7.50\substack{+0.22 \\ -0.20}$	6.94-8.14	2.7%	
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (NO)}$	$2.55\substack{+0.02 \\ -0.03}$	2.47 – 2.63	1 10/	re
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] (\text{IO})$	$2.45_{-0.03}^{+0.02}$	2.37 – 2.53	1.1/0	lati
$\sin^2 \theta_{12} / 10^{-1}$	3.18 ± 0.16	2.71 - 3.69	5.2%	ve lo
$\sin^2 \theta_{23} / 10^{-1} (\text{NO})$	5.74 ± 0.14	4.34-6.10		un
$\sin^2 \theta_{23} / 10^{-1} (IO)$	$5.78\substack{+0.10 \\ -0.17}$	4.33 - 6.08	5.1%	Cer
$\sin^2 \theta_{12} / 10^{-2}$ (NO)	$2.200^{+0.069}$	2.000 - 2.405		tain
$\sin^2 \theta_{13} / 10^{-2}$ (IO)	$2.225^{+0.062}_{-0.070}$	2.018 - 2.424	3.0%	ц
	$1 \circ 0 + 0 \cdot 13$	0 21 1 00	0001	
∂/π (NO)	$1.08^{+0.10}_{-0.12}$	0.71 - 1.99	20%	
δ/π (IO)	$1.58\substack{+0.15\\-0.16}$	1.11 – 1.96	9.0%	

@MariamTortola (IFIC-CSIC/UValencia)

See also

NuFIT and

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

The solar sector

Solar experiments have measured neutrino disappearance for ~ 50 years

The solar sector

 θ₁₂ measurement is dominated by solar neutrino data

 Δm²₂₁ is better measured by KamLAND.

 $\diamond 2\sigma$ mismatch between the values of

 Δm_{21}^2 measured by solar and KamLAND

de Salas et al, **JHEP 02 (2021) 071** [arXiv:2006.11237]

The solar sector

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

The reactor sector

6 cores + 4 ND + 4FD 2 cores + 1 ND + 1 FD 6 cores + 1 ND + 1 FD

The reactor sector

de Salas et al, **JHEP 02 (2021) 071**[arXiv:2006.11237]

Precision dominated by Daya Bay

The reactor sector

The atmospheric sector

The atmospheric sector

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

The octant of θ_{23}

de Salas et al, **JHEP 02 (2021) 071**[arXiv:2006.11237]

→ The combination of LBL experiments prefers θ_{23} < 45° for both orderings

♦ The combination with atmospheric data shifts the preferred $θ_{23}$ to the second octant

The combination with SBL reactors also breaks the degeneracy in favor of 2nd octant

20

The octant of θ_{23}

de Salas et al, JHEP 02 (2021) 071

with $\Delta \chi^2 \ge 5.8$ (6.4) for NO (IO)

The octant of θ_{23}

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

H. Tanaka, TAUP 2019

♦ $\delta_{BF} = 1.5\pi$ (1.2π) for NO (IO)

preference driven by
 sub-GeV e-like samples

SK Collab. PRD97 (2018)

T2K

 $\delta_{BF} \simeq 3\pi/2 \ due \ to \ better \ agreement \ with \\ observed \ v_e \ and \ v_e \ events$

T2K (NO)		-п/2	0	+π/2	π	OBS	
	v mode	1Re 0 d.e.	74.5	62.3	50.6	62.8	75
		1Re 1 d.e.	7.0	6.1	4.9	5.9	15
:	v mode	1Re 0 d.e.	17.1	19.6	21.7	19.3	15

@MariamTortola (IFIC-CSIC/UValencia)

NOvA

P Vahle,

TAUP 2021

♦ δ_{BF} = 1.5π (1.2π) for NO (IO)

preference driven by
 sub-GeV e-like samples

SK Collab. PRD97 (2018)

Slight tension between T2K and NOvA results for NO

de Salas et al, **JHEP 02 (2021) 071**[arXiv:2006.11237] 30 NO ΝΟνΑ 10 T2K 25 LBL Global 20 ×15 10 5 2.0 2.0 0.0 0.5 1.0 1.5 0.5 1.0 1.5 0.0 δ/π δ/π

◆ NO: there is a tension between NOvA and T2K and SK atmospheric results $\delta_{BF} = 1.08\pi$; $\delta = \pi/2$ (0) disfavored at 4.0σ (3.0σ); $\delta = 3\pi/2$ with $\Delta \chi^2 = 4.9$

+ IO: all experiments prefer $\delta \approx 3\pi/2$

 $\delta_{BF} = 1.58\pi$; $\delta = \pi/2$ (π) disfavored at 6.2 σ (3.8 σ);

de Salas et al, JHEP 02 (2021) 071

NO: $\delta_{BF} = 1.08\pi$ (NOvA-T2K tension) $\delta = \pi/2$ (0) disfavored at 4.0 σ (3.0 σ) IO: $\delta_{BF} = 1.58\pi$; $\delta = \pi/2$ (π) disfavored at 6.2 σ (3.8 σ)

de Salas et al, JHEP 02 (2021) 071

1.5

2

$$\begin{split} &\delta/\pi\\ &\text{NO: } \delta_{BF} = 1.08\pi \text{ (NOvA-T2K tension)}\\ &\delta = \pi/2 \text{ (0) disfavored at } 4.0\sigma \text{ (3.0}\sigma\text{)}\\ &\text{IO: } \delta_{BF} = 1.58\pi \text{ ;}\\ &\delta = \pi/2 \text{ (\pi) disfavored at } 6.2\sigma \text{ (3.8}\sigma\text{)} \end{split}$$

@MariamTortola (IFIC-CSIC/UValencia)

0.5

0

()

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

de Salas et al, JHEP 02 (2021) 071 [arXiv:2006.11237]

The mass ordering

◆ T2K and NOvA separate analyses prefer
NO with Δ $\chi^2 \approx 0.4$

◆ T2K + NOvA combined prefer IO with
∆ $\chi^2 \approx 2.4$ (tension in δ for NO)

◆ LBL + REAC prefer NO with Δ $\chi^2 \approx 1.4$ (tension in Δm²₃₁ measurement in IO)

♦ Atmos. sensitivity: Super-K (Δ $\chi^2 \approx 3.5$) and DeepCore (Δ $\chi^2 \approx 1.0$)

◆ Global fit: Δ χ^2 = 6.4 → 2.5σ preference for NO

de Salas et al, JHEP 02 (2021) 071

The mass ordering

de Salas et al, JHEP 02 (2021) 071

2.5σ preference for NO

The mass ordering

de Salas et al, JHEP 02 (2021) 071

2.5σ preference for NO

Other inputs for mass ordering?

de Salas et al, JHEP 02 (2021) 071

Experimental sensitivity to neutrino masses:

- v-oscillations: Δm²_{ij}
- ♦ β-decay: $m_\beta = f(m_i, \theta_{ij})$
- ♦ 0νββ: $m_{\beta\beta} = f(m_i, \theta_{ij}, \varphi_i)$
- cosmology: Σm_i

Results from the combined bayesian analysis:

- \Rightarrow weak/moderate preference for NO driven by oscillation data (2.0 σ)
- $\Rightarrow \beta$ -decay and $0\nu\beta\beta$ have little impact on MO.
- \Rightarrow cosmological data enhances the preference for NO from 2.0 to 2.7

Other inputs for mass ordering?

de Salas et al, JHEP 02 (2021) 071

Experimental sensitivity to neutrino masses:

- ν-oscillations: Δm²_{ij}
- ♦ β-decay: $m_β = f(m_i, θ_{ij})$
- ♦ 0νββ: $m_{\beta\beta} = f(m_i, \theta_{ij}, \varphi_i)$
- cosmology: Σm_i

Results from the combined bayesian analysis:

- \Rightarrow weak/moderate preference for NO driven by oscillation data (2.0 σ)
- $\Rightarrow \beta$ -decay and $0\nu\beta\beta$ have little impact on MO.
- \Rightarrow cosmological data enhances the preference for NO from 2.0 to 2.7

Jiménez et al, 2203.14247 → Decisive evidence for NO from cosmology

Preference for NO (with OSC)

Gariazzo et al, 2205.02195

Preference for NO (without OSC)

Gariazzo et al, 2205.02195

Preference for NO (with OSC)

Gariazzo et al, 2205.02195

Future prospects in neutrino oscillations

Prospects for precision

Prospects for precision

J. Zhao, Neutrino 2022

Prospects for CP violation

T2K

Abe et al, 1609.04111

by 2026 (60-70 x 10²⁰ POT):
 ~ 2σ sensitivity on CP violation at max CP violation (π/2 & 3π/2)

 by 2026 (20×10²¹ POT):
 > 3σ sensitivity on CP violation for 3π/2

Prospects for mass ordering

Next generation of v experiments

DUNE

- 1.2 MW wide-band beam from FNAL to SURF (1300km)
- 4x10 kt Liquid Argon TPCs
- capability to probe 2nd oscillation max
- great sensitivity to mass ordering

Hyper-Kamiokande

188 kton water Cerenkov
 T2HK: great sensitivity to δ_{CP}
 T2HKK (1100km) will have similar sensitivities as DUNE

Next generation of v experiments

Beyond the standard three-neutrino scenario

Beyond the 3-neutrino scenario

♦ Neutrino results suggest the presence of physics BSM to explain:

- light neutrino masses (mass generation mechanism)
- ✓ large neutrino mixing compared to quark sector (flavour problem)
- ✓ short-distance anomalies (LSND, reactor and Ga anomalies)

Many different BSM scenarios analyzed in the literature:

- ✓ neutrino non-standard interactions (NSI) with matter
- ✓ exotic neutrino electromagnetic properties
- ✓ presence of light sterile neutrinos
- ✓ mixing with heavy sterile neutrinos: non-unitary neutrino mixing

⇒ the presence of new physics may affect our current description of 3-nu oscillations as well as the future measurements

Non-unitary light neutrino mixing

Most models of neutrino masses include new extra heavy states

Ex: type I seesaw, $\begin{pmatrix} 0 & M_D \\ M_D^T & M_R \end{pmatrix} \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & M \\ 0 & M^T & \mu \end{pmatrix}$

 \rightarrow (3x3) light neutrino mixing matrix U is **non-unitary** in general

- ▶ NxN non-unitary mixing matrix described with 2N²-(2N-1) parameters
 - \rightarrow 13 parameters are needed to describe a non-unitary (3x3) matrix
 - \rightarrow besides the 4 standard ones (θ_{ij} and δ_{CP}), 9 more parameters are needed
- General parameterization for non-unitary NxN mixing matrix

$$U^{n \times n} = \left(\begin{array}{cc} N & W \\ V & T \end{array}\right) \qquad \mathbf{w}$$

rith $N = N^{NP} U^{3 \times 3} = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} U^{3 \times 3}$

Escrihuela et al, PRD92 (2015) See also Xing, PRD2012 for n=6

 $\rightarrow \alpha_{ii}$ real, α_{ij} complex: 9 new parameters

NU neutrino oscillations in DUNE

$$P_{\mu e} = (\alpha_{11}\alpha_{22})^2 P_{\mu e}^{3\times3} + \alpha_{11}^2 \alpha_{22} |\alpha_{21}| P_{\mu e}^I + \alpha_{11}^2 |\alpha_{21}|^2 \quad \text{with} \quad P_{\mu e}^I(\phi)$$

The new phases (ϕ) will modify the standard oscillation picture in LBL experiments, such as DUNE

Escrihuela et al, NJP 2017

Miranda, MT, Valle, PRL 117 (2016)

 \rightarrow (\delta, $\phi)$ degeneracies in $P_{\mu e}$ for $E \gtrsim$ 3 GeV spoil sensitivity to δ

DUNE CP sensitivity with NU

Fernández-Martínez et al (DUNE-BSM Working Group)

- \rightarrow The sensitivity to CP violation might be spoiled in the absence of priors on NU
- \rightarrow With priors based on current bounds (10⁻³-10⁻²), the effect is less dramatic

Neutrino NSI with matter

- NSI appear in models of neutrino masses
- Information about the size of NSI could be very useful for neutrino model building
- NSI may affect oscillation parameters
 - \Rightarrow precision measurements at current experiments
 - \Rightarrow sensitivity reach of upcoming experiments(degeneracies)

$$V_{\alpha}$$
 V_{β} f'

 $\mathcal{L}_{\rm NC-NSI} = -2\sqrt{2}\overline{G_F} \,\epsilon^{fX}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}\overline{P_X}f\right)$

 $\epsilon_{\alpha\beta} \neq 0 \quad \rightarrow \text{NSI violate lepton flavor (FC-NSI)}$

 $\epsilon_{\alpha\alpha} - \epsilon_{\beta\beta} \neq 0 \quad o$ NSI violate lepton universality (NU-NSI)

⇒ mainly affecting neutrino propagation in matter (but also detection in Super-K & Borexino)

NSI at future LBL experiments

(θ_{23} - $\epsilon_{\tau\tau}$) degeneracy in DUNE

Gouvea and Kelly, NPB 2016

Coloma, JHEP 2016

NSI at future LBL experiments

NSI significantly spoil sensitivity to CP violation in DUNE

Masud and Mehta, PRD 2016

NSI at future LBL experiments

NSI significantly spoil sensitivity to mass ordering in DUNE

Masud and Mehta, PRD 2016

Beyond the 3-neutrino scenario

♦ Neutrino results suggest the presence of physics BSM to explain:

- light neutrino masses (mass generation mechanism)
- ✓ large neutrino mixing compared to quark sector (flavour problem)
- ✓ short-distance anomalies (LSND, reactor and Ga anomalies)

Many different BSM scenarios analyzed in the literature:

- ✓ neutrino non-standard interactions (NSI) with matter
- ✓ exotic neutrino electromagnetic properties
- ✓ presence of light sterile neutrinos
- ✓ mixing with heavy sterile neutrinos: non-unitary neutrino mixing

⇒ the presence of new physics may affect our current description of 3-nu oscillations as well as the future measurements

Beyond the 3-neutrino scenario

♦ Neutrino results suggest the presence of physics BSM to explain:

- light neutrino masses (mass generation mechanism)
- ✓ large neutrino mixing compared to quark sector (flavour problem)
- ✓ short-distance anomalies (LSND, reactor and Ga anomalies)

Many different BSM scenarios analyzed in the literature:

- ✓ neutrino non-standard interactions (NSI) with matter
- ✓ exotic neutrino electromagnetic properties
- ✓ presence of light sterile neutrinos
- ✓ mixing with heavy sterile neutrinos: non-unitary neutrino mixing

⇒ the presence of new physics may affect our current description of 3-nu oscillations as well as the future measurements

Can they also help reducing the current tensions?

The solar-KamLAND Δm^2_{21} tension

 $\Rightarrow 2\sigma~(1.5\sigma)$ tension between preferred value of $\Delta m^2{}_{21}$ from KamLAND and solar data

 $\Rightarrow \Delta m_{21}^2$ preferred by KamLAND predicts steep upturn and smaller D/N asymmetry

The solar-KamLAND Δm^2_{21} tension

 $\Rightarrow 2\sigma~(1.5\sigma)$ tension between preferred value of $\Delta m^2{}_{21}$ from KamLAND and solar data

 $\Rightarrow \Delta m^2_{21}$ preferred by KamLAND predicts steep upturn and smaller D/N asymmetry

♦ NSI ($\varepsilon \sim 0.3$) can reconcile both results:

- \Rightarrow flatter spectrum at intermediate E-region
- \Rightarrow larger D/N asymmetries can be expected

Escrihuela et al, PRD80 (2009); Coloma et al, PRD96 (2017)

@MariamTortola (IFIC-CSIC/UValencia)

Maltoni & Smirnov, EPJ 2015

The T2K-NOvA δ_{CP} tension

• NSI may include new sources of CP violation besides δ_{CP} : $\epsilon_{\alpha\beta} = |\epsilon_{\alpha\beta}| \exp(i\phi_{\alpha\beta})$

• CP-violating NSI with a new complex phase $\phi_{e\mu}$ or $\phi_{e\tau}$ close to maximal with NSI couplings $\epsilon_{e\mu}$ or $\epsilon_{e\tau}$ of the order of 0.2 may reconcile T2K and NOvA results.

Chatterjee and Palazzo, PRL 2021

Denton et al, PRL 2021

The T2K-NOvA δ_{CP} tension

Non-unitary mixing analysis of T2K and NOvA (normal ordering)

NU includes additional sources of CP violation.

♦ No significant deviation from unitary mixing is found: updated bounds with LBL and SBL ⇒MINOS improves current neutrino limits!

 \Rightarrow The tension is not alleviated in the context of NU neutrino mixing

Summary

- Current status of three-neutrino oscillation parameters:
- ✓ very precise and robust determinations for most of them (1.3-10%)
- ✓ preference for $\theta_{23} > 45^{\circ}$, 1st octant value disfavoured with $\Delta \chi^2 \ge 5.8$ (6.4)
- ✓ $\delta_{BF} = 1.08\pi$ (1.58 π) for NO (IO) ; $\delta = \pi/2$ disfavored at 4.0 σ (6.2 σ)
- \checkmark 2.5 σ hint for normal ordering from atmospheric, LBL and reactor data
- sensitivity on mass ordering driven by oscillation data so far.
- New results presented in Neutrino 2022 may change some results:
- ✓ Daya Bay achieved expected final sensitivity on $sin^2 2\theta_{13}$
- Small changes expected in CP violation, atmospheric octant and mass ordering

→ By 2025/2026:

- ✓ oscillation parameters will be measured with 0.6-3% precision
- ✓ θ_{23} octant can be resolved at more than 3σ (for some values)
- ✓ 2-3σ sensitivity to CP violation at NOvA and T2K
- \checkmark 3 σ sensitivity to MO from reactor, accelerator and nu-telescopes
- \Rightarrow sensitivities above 3σ from a single experiment: DUNE, Hyper-Kamiokande

• New physics BSM may affect the current description of neutrino oscillations relaxing tensions or worsening the precision of measurements.