2° reunido do projecto BigDataHEP — 13 Feb 2020

TASK 2

Machine learning for LHC data: physics
objects reconstruction and physics aware
learning

Guilherme Milhano



jet quenching

MODIFICATION OF JET PROPERTIES DUE TO TRAVERSAL OF, AND INTERACTION WITH, QGP PRODUCED IN HEAVY ION COLLISIONS
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itis notsimple .

STANDARD APPROACH IS DEVISE INCREASINGLY SOPHISTICATED OBSERVABLES THAT CAN BE ARGUED TO BE SENSITIVE TO SPECIFIC ASPECTS OF JET-QGP
INTERACTION AND, IF JET DYNAMICS WERE FULLY UNDERSTOOD, TO THE EXTRACTION OF QGP PROPERTIES
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jet quenching

HOWEVER, NO CRITERIUM TO SEPARATE SAMPLES OF STRONGLY AND WEAKLY MODIFIED JETS :: EFFECTS ARE DILUTED IN SAMPLE

CHOICES OF SENSITIVE OBSERVABLES\STRONGLY BIASED BY PREJUDICE AND LACK OF IMAGINATION [OFTEN IMPORTED FROM QUARK/ GLUON JET
DISCRIMINATION AND W-TAGGER STUDI

ML OFFERS TOOLS TO SEPARATE SAMPLES ON A STATISTICAL BASIS [CLASSIFI(ATION]

ML OFFERS AN AGNOSTIC APPROACH :: LET THE MACHINE LEARN AND LEARN THE PHYSICS [BEST OBSERVABLES] FROM THE MACHINE



a brief summary

- 2 MSc theses concluded

- Jodo Goncalves [IST]
- Filipa Peres [UMinho]
- 1 MSc on-going ,

- Joao Silva [IST]

- work involving Liliana, Miguel and myself

- some of the very first works in ML for jets in HI

- expect to publish soon
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topic modelling
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Z +q jet PbPb 0-10%

Z+qjetpp
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techniques from document classification perform well in separating jets in pp and AA

o two topics accurately reconstructed from two enriched samples
o extensive studies of performance improvement with additional samples

JoRo GONCALVES [MSC IST]
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lund planes

Fitipa PERES [MSC UMINHO]

Primary Lund Plane: C/A
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Lund plane :: information on jet history via

eclutiering atgorithm further discrimination power needs grooming of jets

per jet sequence os splittings as input to NN
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very promising first results

on going - jet Images

cnn
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LILIANA APOLINARIO, GUILHERME MILHANO, MIGUEL ROMAO

jets as images [from calorimetric energy depositions] to train CNN

Fake Signal for Maximal Output of Layer: conv2d_3, Feature: 81
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Fake Signal for Maximal Output of Layer: locally_connected2d_3, Feature: 39
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read off features identified by CNN



Jet evolution history

Convolutional Neural Networks (CNN)

2
Construct jet's evolution history with C/A algorithm o ARij
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JoA0 Sitva [MSC IST, ON-GOING]

CNN
Additional
(physical)
@ Output insights!
Identified jets + learned feature
maps
G. Kasieczka et al. “Deep-learning Top Taggers or The End of QCD?”
Jan 2020 22/35 Machine Learning in Heavy-lon Jets / Jodo Silva

o jet evolution formulated in momentum space RE[U rSiVE N BUId | N etwo |'|(S (R N N)

e recover space-time picture [needed for interaction with
. . . . R ive N | Net ks (RNN ith t I defined by a jet’
time evolving OGP] from multi-observable consistency T NS s etworks (RN with topology defined by a Jets

evolution history
o analogous to learning a grammar from texts

QCD Syntatic Structure

Partons 4-momenta <:> Words
Jets <:> Sentence

= JUST STARTED :: Full Event

<:\> Text
Gilles Louppe et al. “QCD-Aware Recursive Neural Networks for Jet Physics”
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