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jet quenching
MODIFICATION OF JET PROPERTIES DUE TO TRAVERSAL OF, AND INTERACTION WITH, QGP PRODUCED IN HEAVY ION COLLISIONS

it is not simple

STANDARD APPROACH IS DEVISE INCREASINGLY SOPHISTICATED OBSERVABLES THAT CAN BE ARGUED TO BE SENSITIVE TO SPECIFIC ASPECTS OF JET-QGP 
INTERACTION AND, IF JET DYNAMICS WERE FULLY UNDERSTOOD, TO THE EXTRACTION OF QGP PROPERTIES
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We introduce a new “quantile” analysis strategy to study the modification of jets as they traverse
through a droplet of quark-gluon plasma. To date, most jet modification studies have been based
on comparing the jet properties measured in heavy-ion collisions to a proton-proton baseline at the
same reconstructed jet transverse momentum (pT ). It is well known, however, that the quenching
of jets from their interaction with the medium leads to a migration of jets from higher to lower pT ,
making it challenging to directly infer the degree and mechanism of jet energy loss. Our proposed
quantile matching procedure is inspired by (but not reliant on) the approximate monotonicity of
energy loss in the jet pT . In this strategy, jets in heavy-ion collisions ordered by pT are viewed
as modified versions of the same number of highest-energy jets in proton-proton collisions, and the
fractional energy loss as a function of jet pT is a natural observable (QAA). Furthermore, despite
non-monotonic fluctuations in the energy loss, we use an event generator to validate the strong
correlation between the pT of the parton that initiates a heavy-ion jet and the pT of the vacuum jet
which corresponds to it via the quantile procedure (pquantT ). We demonstrate that this strategy both
provides a complementary way to study jet modification and mitigates the e↵ect of pT migration in
heavy-ion collisions.

The deconfined phase of QCD matter, the quark-gluon
plasma, was first discovered in collisions of heavy nuclei
at the Relativistic Heavy Ion Collider [1–5] and confirmed
at the Large Hadron Collider [6–8]. As in high-energy
proton-proton collisions, heavy-ion collisions produce col-
limated sprays of particles, called jets, from highly ener-
getic scatterings of quarks and gluons. The observation
of “jet quenching”—a strong suppression and modifica-
tion of jets in heavy-ion collisions [7–9]—ushered in a new
era of studying the properties of the quark-gluon plasma
by measuring its e↵ect on jets [10–23].

A central issue in interpreting jet quenching measure-
ments is that medium-induced modifications necessarily
a↵ect how jets are identified experimentally. Current
methods compare proton-proton and heavy-ion jets of the
same final (reconstructed) transverse momentum pT and,
as such, inevitably su↵er from significant biases from the
migration of jets from higher to lower pT due to medium-
induced energy loss (see [24, 25]). While these methods
have been very successful in qualitatively demonstrat-
ing the phenomena of jet quenching, quantitive studies
often necessitate interpreting the data through theoreti-
cal models which include migration e↵ects. Ideally, one
would like to isolate samples of jets in proton-proton and
heavy-ion collisions which were statistically equivalent
when they were produced, di↵ering only by the e↵ects
of the plasma.

In this letter, we propose a novel data-driven strat-
egy for comparing heavy-ion (AA) jet measurements to
proton-proton (pp) baselines which mitigates, to a large
extent, the e↵ect of pT migration. The famous jet ra-
tio RAA compares the e↵ective cross-section for jets in
proton-proton and heavy-ion collisions with the same re-

constructed pT :

RAA =
�e↵
AA

�e↵
pp

����
pT

, (1)

as illustrated in blue in Fig. 1a. Here, we introduce a
“quantile” procedure, which divides jet samples sorted by
pT into quantiles of equal probability. Our new proposed
observable for heavy-ion collisions is the pT ratio between
heavy-ion and proton-proton jets in the same quantile:

QAA =
pAA
T

pppT

����
⌃eff

, (2)

as illustrated in red in Fig. 1b, where 1�QAA is a proxy
for the average fractional jet energy loss. (QAA is not
related to QpA used by ALICE [29]).
To give an intuitive understanding of Eq. (2), consider

a simplified scenario where medium-induced energy loss
is monotonic in the pT of the initial unquenched jet. In
that case, the nth highest energy jet in a heavy-ion sam-
ple is a modified version of the nth highest energy jet in
the corresponding proton-proton sample. Thus, in this
simplified picture of energy loss, we can obtain a sam-
ple of heavy-ion jets that is statistically equivalent to
its proton-proton counterpart by selecting jets with the
same (upper) cumulative e↵ective cross-section:

⌃e↵(pmin
T ) =

Z 1

pmin
T

dpT
d�e↵

dpT
. (3)

Note that for comparison to proton-proton cross-sections,
heavy-ion cross-sections must be rescaled by the average
number of nucleon-nucleon collisions hNcolli: �e↵

pp = �pp,

�e↵
AA = �AA/hNcolli. Of course, energy loss is not strictly
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The Soft Drop algorithm [10, 11] reconstructs jets with
the anti-k? algorithm [12] and reclusters them with a pre-
scription entirely based on angles (Cambridge/Aachen).
The last step of this reclustering is then undone to give
the two prongs with the largest angular separation. If
the p?-sharing between the two prongs satisfies

zg ⌘ min (p?,1, p?,2)

p?,1 + p?,2
> zcut

✓
�R12

R

◆�

, (1)

then the prongs are accepted and the algorithm termi-
nates. Otherwise, the softer of the prongs is rejected,
the last reclustering step on the hard prong is undone,
and the algorithm continues till condition (1) is satisfied.
This is one of a variety of grooming techniques that can
be used to systematically reject (or study) soft contribu-
tions associated to jets. In eq. (1), R denotes the jet ra-
dius. In the following, we work for � = 0, and we use the
default zcut = 0.1. We also require that only configura-
tions with�R12 > 0.1 are included in the zg-distribution.
This condition was added by the CMS collaboration to
the original Soft Drop proposal, and we adopt it to facil-
itate comparison to the preliminary data [13].

Here, we investigate the physical mechanisms underly-
ing the softening of the groomed shared momentum frac-
tion zg in Jewel, including the possibility that recoil
e↵ects contribute. In general, the momentum of recoil-
ing partons is composed of a thermal component that
they carry before the jet-medium interaction, as well as
the momentum transferred when interacting with jet con-
stituents. Only the latter contributes to the medium re-
sponse, the former is removed experimentally by back-
ground subtraction techniques. However, these tech-
niques cannot be applied to Jewel as it does not gen-
erate full heavy ion events. Instead, consistent with ex-
perimental procedures, the (thermal) background contri-
bution is subtracted from generated event samples with
a so-called 4-momentum subtraction technique validated
in [6].

We emphasize that for hadronization, Jewel converts
all recoiling partons into gluons that are inserted into
the strings that connect the partons forming the jets. It
is therefore not meaningful to label hadrons in the event
record as belonging to the jet or to the medium response.
However, one can hadronize events in Jewel with or
without the recoiling partons. Fig. 1 shows the corre-
sponding zg-distributions. Since recoiling partons do not
rescatter in Jewel, and since rescattering induces ther-
malization processes, generated events with recoiling par-
tons may overestimate the physically expected medium
response. The truth is therefore expected to lie in be-
tween the green (without recoil) and blue (with recoil)
curves in Fig. 1, and the di↵erence between both curves
should be regarded as an upper bound for the expected
medium-response.

Even without including recoiling partons, the simu-
lated zg-distribution in Fig. 1 shows a mild tilt towards
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FIG. 1. (top) Jewel+Pythia result for the groomed shared

momentum fraction zg in central PbPb events analyzed with

(blue curve) and without (green curve) keeping track of

medium response and compared to simulated pp events (red

curve). (bottom) The ratio of the zg-distributions in PbPb

and pp events, compared to CMS data for jet p? between 140

GeV and 160 GeV. All results are for
p
sNN = 5.02 TeV and

are shown background subtracted (4-momentum subtraction

method) and on hadron level.

smaller zg in comparison to the proton-proton baseline.
Without additional information, the interpretation of
this tilt remains ambiguous. The reason is that the zg-
distribution is a self-normalizing curve. A tilt of the type
shown in Fig. 1 can therefore arise either (i) from an en-
hanced contribution at small zg (that reduces the bin
entries at large zg due to normalization), or (ii) from
a depletion of jets with large zg (that would enhance
bin entries at small zg by normalization). The first of
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FIG. 1. (top) Jewel+Pythia result for the groomed shared

momentum fraction zg in central PbPb events analyzed with

(blue curve) and without (green curve) keeping track of

medium response and compared to simulated pp events (red

curve). (bottom) The ratio of the zg-distributions in PbPb

and pp events, compared to CMS data for jet p? between 140

GeV and 160 GeV. All results are for
p
sNN = 5.02 TeV and

are shown background subtracted (4-momentum subtraction

method) and on hadron level.

smaller zg in comparison to the proton-proton baseline.
Without additional information, the interpretation of
this tilt remains ambiguous. The reason is that the zg-
distribution is a self-normalizing curve. A tilt of the type
shown in Fig. 1 can therefore arise either (i) from an en-
hanced contribution at small zg (that reduces the bin
entries at large zg due to normalization), or (ii) from
a depletion of jets with large zg (that would enhance
bin entries at small zg by normalization). The first of
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jet quenching
HOWEVER, NO CRITERIUM TO SEPARATE SAMPLES OF STRONGLY AND WEAKLY MODIFIED JETS :: EFFECTS ARE DILUTED IN SAMPLE

CHOICES OF SENSITIVE OBSERVABLES STRONGLY BIASED BY PREJUDICE AND LACK OF IMAGINATION [OFTEN IMPORTED FROM QUARK/GLUON JET 
DISCRIMINATION AND W-TAGGER STUDIES IN VACUUM] 

ML OFFERS TOOLS TO SEPARATE SAMPLES ON A STATISTICAL BASIS [CLASSIFICATION]

ML OFFERS AN AGNOSTIC APPROACH :: LET THE MACHINE LEARN AND LEARN THE PHYSICS [BEST OBSERVABLES] FROM THE MACHINE



a brief summary
• 2 MSc theses concluded 

• João Gonçalves [IST] 

• Filipa Peres [UMinho] 

• 1 MSc on-going ,  

• João Silva [IST] 

• work involving Liliana, Miguel and myself 

• some of the very first works in ML for jets in HI 

• expect to publish soon
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Figure 3.13: (right) Attempting to extract quenched and unquenched jet distributions by applying demix
to the jet’s multiplicity from JEWEL’s Z + quark samples, at a centrality bin of 0-10% and in pp. (left) Plot
of the reducibility factors when smaller than one.

0 10 20 30 40 50 60 70
Jet Mass (GeV)

0

0.02

0.04

0.06

Pr
ob

ab
ilit

y 
de

ns
ity

 topic 1

 topic 2

Z + q jet PbPb 0-10%

Z + q jet pp

 = 0.692 +- 0.0694i=1
k=1f

 = 0.0925 +- 0.0196i=2
k=1f

0 10 20 30 40 50 60 70
Jet Mass (GeV)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1κ

Figure 3.14: (right) Attempting to extract quenched and unquenched jet distributions by applying demix
to the jet’s mass from JEWEL’s Z + quark samples, at a centrality bin of 0-10% and in pp. (left) Plot of
the reducibility factors when smaller than one.
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Figure 3.15: (right) Attempting to extract quenched and unquenched jet distributions by applying demix
to the jet’s thrust from JEWEL’s Z + quark samples, at a centrality bin of 0-10% and in pp. (left) Plot of
the reducibility factors when smaller than one.
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For the Z + jet samples, in figures 3.22 to 3.24, it is shown that taking only the two PbPb samples

yields again acceptable results, better than the pp vs PbPb at 0-10% centrality case. Moreover taking

only averages in the input distributions (the inverted triangle in figure 3.23) yields even better results.

Furthermore, the jet’s mass shows some red vertical lines indicating the use of the highest centrality

sample with an average of pp and the lower centrality sample as optimal.
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Figure 3.19: Ternary plot for dijet’s jet’ multiplicity.
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Figure 3.20: Ternary plot for dijet jet’s mass.
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Figure 3.21: Ternary plot for dijet jet’s thrust.
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Figure 3.22: Ternary plot for Z + jet jet’s multiplicity.
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Figure 3.23: Ternary plot for Z + jet jet’s mass.
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Figure 3.24: Ternary plot for Z + jet jet’s mass.
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techniques from document classification perform  well  in separating jets in pp and AA 
• two topics accurately reconstructed from two enriched samples 
• extensive studies of performance improvement with additional samples



lund planes

Chapter 6 – Machine learning results on the Z + jet hadronic samples Filipa C. R. Peres

(ln(1/✓i), ln(t0F,i)) Lund plane coordinates. From table 6.1 it can be seen that for this case we
obtained a binary accuracy of 72.8% with the evaluation set and using the default threshold value
for the classifier (i.e., 0.5). For this particular instance, we decided to analyse the probability
densities of the classifier for quenched and non-quenched jets. These are presented in figure 6.3a.
Indeed we confirm that quenched jets tend to have classifier values close to one, but there is still
a fraction of 24% of data points which yield values smaller than 0.5 . On the other hand, vacuum
jets do not exhibit such a peaked probability density close to zero as do quenched jets close to
unity, but they still yield a larger fraction of data points to the left of the default threshold than
to its right: namely, 69% of vacuum jets return classifier values smaller than 0.5. Conversely
to these two values, we have a true positive rate of 1 � 0.24 = 0.76 and a false positive rate of
1� 0.69 = 0.31 , for the default threshold value of the classifier.

To evaluate how these values change when we vary the threshold of the classifier we can have
a look at the ROC curve plotted in figure 6.3b. The overall look of this curve is very positive
and, particularly, the AUC is approximately 0.80 , which is a good result. Globally, we conclude,
once again, that the results obtained with our model are promising.

(a) (b)

Figure 6.3: This figure presents in (a) the probability density of the classifier values for both quenched

(red) and non-quenched (blue) jets and in (b) the corresponding ROC curve and its respective AUC,

obtained with our model for single jet events with C/A reclustering and Lund plane coordinates

(ln(1/✓i), ln(t0F,i)).
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(a) (b)

(c)

Figure 6.2: This figure presents the binary accuracy achieved by the RNN in the validation set as

a function of the successive epochs, when using as input the sequence of primary emissions of events

with: (a) one single jet; (b) two jets and (c) either one or two jets. The sequence of primary emissions

was input to the RNN as consecutive pairs of coordinate points in the respective kinematical Lund

plane construction and for a given reclustering algorithm: particularly, for the (ln(✓), ln(z✓)) kinematical

construction with the C/A algorithm (blue dots), and for the new definition (ln(✓), ln(t0F )) together with

both the C/A algorithm (red cross) and tF algorithm (green plus).

C/A reclustering + C/A reclustering + tF reclustering +
(ln(1/✓i), ln(zi✓i)) (ln(1/✓i), ln(t0F,i)) (ln(1/✓i), ln(t0F,i))

Events with 1 single jet 69.7% 72.8% 72.1%
Events with 2 jets 68.4% 72.4% 72.5%

Events with either 1 or 2 jets 69.1% 72.6% 71.4%

Table 6.1: The table summarises the binary accuracy achieved by the model when applying it to the

evaluation set in each of the nine different situations.

We decided to pursue further investigations on the performance of our model for the par-
ticular case of events with one single jet, reclustered with the C/A algorithm and using the
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again appear to present larger splitting fractions at larger formation times, as is corroborated by
figure 5.12.

(a) (b)

Figure 5.10: Primary Lund planes for hadronised, gluon-initiated jets developed in vacuum, found with

the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

(a) (b)

Figure 5.11: Primary Lund planes for in-medium, hadronised, gluon-initiated jets found with the anti-kt

algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.
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quenched and non-quenched jets than does the traditional (ln(1/✓), ln(z✓)) plane. This was
based purely on the visual examination of the radiation patterns obtained with each of these two
constructions. In this dissertation, we decided to go a step further and investigate if inputting
the information used to fill these planes into a ML algorithm would allow it to discern patterns
in the data and correctly classify the jets as quenched or non-quenched. The idea is identical to
the one used in [80] to identify jets stemming from the decay of boosted W hadrons.

As we have seen, along the studies made in this dissertation we have used three different
procedures for filling the kinematical Lund planes. While we have mostly abstained from showing
the full Lund diagram filled with all the emissions within each jet (except for the ones presented
in appendix B), we have argued that it exhibits similar appearance to the primary Lund plane
and, hence, should yield identical discrimination power.

To perform our ML investigations, we chose to use as input data the sequence of primary
emissions within each jet, either:

[[ln(1/✓1), ln(z1✓1)] , [ln(1/✓2), ln(z2✓2)] , ..., [ln(1/✓n), ln(zn✓n)]]

or ⇥⇥
ln(1/✓1), ln(t

0
F,1)

⇤
,
⇥
ln(1/✓2), ln(t

0
F,2)

⇤
, ...,

⇥
ln(1/✓n), ln(t

0
F,n)

⇤⇤
,

depending on the axis definition which is being explored.
There are several reasons to motivate this choice. First, at parton level we have seen that

the primary Lund planes yield a good discrimination between quenched and non-quenched jets.
We have also remarked that the explicit (average) path of primary emissions is a distinct feature
between the two classes of jets. Furthermore, because we focus on the primary emissions, we
have an explicit, sensible sequence of coordinate pairs to input to the ML model.

From the visual discrimination viewpoint, neither the use of only the first emission nor of the
totality of emissions lose in comparison to the primary Lund plane. As such, they are potentially
also a good choice. We have decided against the use of the first splittings for two main reasons: (i)
it would yield a very reduced statistics to perform ML on; and (ii) since no grooming procedures
have been employed it is probable that many of the identified first splittings are not the ones
worth investigating. On the other hand, the use of the totality of emissions would certainly win
over the use of primary emissions alone in terms of the larger statistics it provides. However,
using all emissions would spoil the concept of a clear, explicit sequence of emissions and, for that
reason, we decided to leave such a study for the future.

Since our input dataset is a collection of ordered sequences (one for each jet) it is natural to
use a RNN architecture. We tested several different model architectures using different numbers
of stacked recurrent layers and different numbers of units in them. In the end, since the perform-
ances achieved by the different models were identical, we settled on the simplest architecture,
which has the advantage of being quicker to train. As such, our final NN consists in a single
GRU layer with 64 units, followed by a dense layer with a single unit and sigmoid activation.1

Our ML was implemented in Keras 2.2.4 [86], using TensorFlow 1.13.1 [87] as backend. For
the optimisation we opted towards the use of RMSProp [84, 88] with an initial learning rate of
10�2 which is reduced by half if there is no improvement to the validation loss score over the
last 5 epochs. We set the network to train on a batch size of 512 for a total of 1000 epochs, but
implemented an early-stopping method such that, if there is no improvement to the model for
25 consecutive epochs, the training stops and the model’s weights are updated to the ones that
yielded the lowest validation loss. As explained in the previous section, this serves to prevent
both underfitting and overfitting of the model.

1
Alternatively, a single LSTM layer could have been used instead of the GRU layer since, according to reference

[80], that should yield an equivalent performance.
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