

# Probing the SM (and more) with

# **LAS** Forward Proton Tagging @ ATLAS



EXPERIMENT

# Diffracted p?



- Soft interaction between p
  - No dissociation
  - Continue moving in the beam pipe
  - Detected far away from the interaction point



section

Cross

#### High cross section processes:

- Total cross section with ALFA
- Single/double diffraction (differential distributions)
- Other processes
- Medium cross section:
  - central exclusive production
- Low cross section:
  - Quartic Gauge Boson Couplings
  - FCNC in top quark production
  - Searches: dark matter





section

Cross

#### High cross section processes:

- Total cross section with ALFA
- Single/double diffraction (differential distributions)
- Other processes
- Medium cross section:
  - central exclusive production
- Low cross section:
  - Quartic Gauge Boson Couplings
  - FCNC in top quark production
  - Searches: dark matter



section

Cross

#### High cross section processes:

- Total cross section with ALFA
- Single/double diffraction (differential distributions)
- Other processes
- Medium cross section:
  - central exclusive production
- Low cross section:
  - Quartic Gauge Boson Couplings
  - FCNC in top quark production
  - Searches: dark matter





#### ARP

#### Detectors

ATLAS Roman Pot Detectors



Two sets of detectors

- ATLAS Forward proton tagging detectors (AFP)
- Absolute Luminosity detector (ALFA)

ATLAS Roman Pot Detectors

Luminosity detector (ALFA)







# ALFA

- Measure scattered p at mm distance from beam
  - Resolution: 30  $\mu$ m in x, y
  - Precise alignment
     Overlap detector 10 µm
     precision
- Square scintillating fibres
  - aluminised (body, top)
  - Staggered layers
- Read out by MAPMTs



# ALFA

- Housed in Roman Pots to approach the beam
   Operates at low luminosity and with special optics
   L = 10<sup>27</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - High  $\beta^*$





# Detector Control System

- Main Portuguese
   responsibility for years
- Provides
  - Safe operation of the detector
  - Monitoring and control





#### **ATLAS Forward Proton Tagging Detectors**



11

# AFP

Tracking detectors:

 slim-edge 3D ATLAS IBL
 pixel sensors bonded
 with FE-I4 readout
 chips.

- σx = 6 μm, σy = 30 μm
- Trigger: majority vote (2 out of 3)



# AFP

 Time of flight measurement

 Pile-up suppression primary vertex z<sub>ID</sub> and z<sub>ToF</sub>
 σ<sub>t</sub> ~20 ps

 Quartz bars @ Cerenkov angle
 Readout by Photonis MCP-PMT

Horizontally inserted RP



#### **AFP Detector control system**



.

#### **AFP Detector Control System**

- FiniteStateMachine
- Archiving
- Alerts
- Graphical user interfaces



## **AFP installation and data taking**

- Staggered installation
  - First arm in YETS 2016
  - Second arm and ToF detecto in YETS 2017
- Operation experience
  - No ToF measurement due to problems with MCP-PMT
    - Solutions in place for Run 3
  - Very low ToF efficiency but good timing resolution ( $\sigma_t$ =20-25 ps/p)
- 2017 data available for physics studies
- For Run 3:
  - New ToF detectors
  - Out-of-vacuum PMT solution —> long lifetime of the PMT
  - picoTDC: improve the timing!

section

Cross

High cross section processes:
 Total cross section with ALFA
 Single/double diffraction (differential

distributions)

- Other processes
- Medium cross section:
  - central exclusive production
- Low cross section:
  - Quartic Gauge Boson Couplings
  - FCNC in top quark production
  - Searches: dark matter



arXiv:1408.5778 arXiv:1607.06605

- Fundamental parameter of the strong interaction
- Study its evolution as  $\sqrt{s}$  increases
- Measured using the optical theorem
  - Needs independent luminosity measurement
- As small t as possible
  - minimize model dependence!
  - special optics needed

-  $\beta^* = 90 \text{ m}$ 

$$\sigma_{\text{tot}} = 4 \,\pi \text{Im} \left[ f_{\text{el}} \left( t \to 0 \right) \right]$$

Elastic scattering amplitude Extrapolated to zero momentum Transfer

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}t} &= \frac{1}{16\pi} \left| f_{\mathrm{N}}(t) + f_{\mathrm{C}}(t) \mathrm{e}^{\mathrm{i}\alpha\phi(t)} \right|^2 \\ f_{\mathrm{C}}(t) &= -8\pi\alpha\hbar c \frac{G^2(t)}{|t|} , \\ f_{\mathrm{N}}(t) &= (\rho + \mathrm{i}) \frac{\sigma_{\mathrm{tot}}}{\hbar c} \mathrm{e}^{-B|t|/2} \end{aligned}$$

• 4-momentum transfer:  $-t = (\theta^* \times p)^2$ • Use matrix method  $w = \{x, y\}$  $\theta_w^* = \frac{w_A - w_C}{M_{12,A} + M_{12,C}}$ 

Reduce beam-halo backgrounds





- Correct for acceptance and reconstruction efficiency
- Luminosity from Van der Meer scans calibrated at 10<sup>30</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - Precision 1.5%
- Dominating uncertainties:
  - beam momentum, luminosity





 Significant improved measurement with respect to previous ATLAS publications!



 $\sigma_{\text{tot}} = 96.07 \pm 0.18 \text{ (stat.)} \pm 0.85 \text{ (exp.)} \pm 0.31 \text{ (extr.) mb}$  $\sigma_{\text{el}} = 24.33 \pm 0.04 \text{ (stat.)} \pm 0.39 \text{ (syst.) mb}$  $\sigma_{\text{inel}} = 71.73 \pm 0.15 \text{ (stat.)} \pm 0.69 \text{ (syst.) mb}$ 

#### Inelastic cross sections measurements



- ALFA measurements at 7 and 8 TeV
- Other measurements using MinBias scintillators and rapidity gaps
  - Sensitive to events with
    - $M_X > 13 \text{ GeV}$





Complementary method, not sensitive to the elastic cross section Only sensitive to inelastic events (including single diffraction)

section

Cross

#### • High cross section processes:

- Total cross section with ALFA
  Single diffractive deferential distributions
- Other processes
- Medium cross section:
  - central exclusive di-jet production
- Low cross section:
  - Quartic Gauge Boson Couplings
  - FCNC in top quark production
  - Searches: dark matter



#### Standard Model Production Cross Section Measu

## **Single Diffractive Differential Cross Sections**

р

p

#### arXiv:1911.00453

- Diffraction important to understand
  - Low-x proton structure
  - Cosmic ray air showers
  - Pile-up modelling
  - <u>۰...</u>
- Phenomenologically described by the exchange of a pomeron
- Large uncertainties on predictions for the LHC
- Previous ATLAS measurements exploited large rapidity gaps







- Previous ATLAS measurements: inelastic cross section as a function of rapidity gap
  - Clearly establish the presence of diffractive component
  - Cannot distinguish between single and double diffraction
  - Large uncertainty on model predictions!!
- Forward proton tagging can see the differences!





- Recent measurement of single diffraction
  - Exclude double diffraction/non-diffractive
  - Identify intact final state proton with ALFA
    - Local precision: 30  $\mu$ m (x, y)
- Dedicated data taking in 2012 (high  $\beta^*$ )
  - ALFA measurement of 4-momentum

transfert and 
$$\xi = \frac{M_{X}^{2}}{s}$$





arXiv:1911.00453

- p E loss reconstructed from ID:  $\xi \simeq \frac{\sum_{i} E^{i} \pm p_{z}^{i}}{-}$ 
  - Min pT 100 MeV
  - Corrected for neutral particles
  - Cross-checked using ALFA
- Backgrounds:
  - Central diffraction: estimated from MC
  - Overlay: pile-up, beam background, …
    - Data driven: activity in all MBTS, accidental p
  - Modelling cross checked with validation region





arXiv:1911.00453

- Bayesian iterative unfolding
- Dominant systematics





arXiv:1911.00453

- Pythia 8 A3:
  - Tripple Regge formalism
  - Pomeron with trajectory  $\alpha(t) = \alpha(0) + \alpha' t$
  - 'Donnachie–Landshoff' pomeron flux factor
     α(0) = 1.07
- Pythia 8 A2:
  - Schuler–Sjöstrand pomeron flux factor  $\alpha(0) = 1$
- H1 2006 Fit B diffractive pdfs
- Herwig7: similar model to Pythia A3 but final state particle dissociation according to multi-peripheral model



 $-4.0 < \log_{10} \xi < -1.6$  $0.016 < |t| < 0.43 \text{ GeV}^2$ 



- Exponential fit:
- $B = 7.65 \pm 0.26$ (stat.)  $\pm 0.22$ (syst.) GeV<sup>-2</sup>
  - Agreement with Donnachie–Landshoff/Schuler–Sjöstrand within  $1.6\sigma/0.5\sigma$

Integrated luminosity

section

Cross



Standard Model Production Cross Section Measu

## **Central-exclusive di-jet production**



- Exclusive: only di-jet system produced centrally
  - No colour exchange between p
  - Central system: J<sup>PC</sup> = 0<sup>++</sup> state
- Measurement requires AFP detector
  - High luminosity needed
  - Proton kinematics measurement
  - Proton-vertex reconstruction —> ToF
    - Background rejection

 $z_{vtx} = c(t_A - t_C)$ 

 $\xi_p =$ 

 $p_{proton}$ 

#### **CEP dijet expectations at ATLAS**

#### ATL-PHYS-PUB-2015-003

p energy resolution:



Requires especial triggers!

Event selection based on exclusivity





units

#### AFP Central Exclusive Production di-jet trigger

- Being developed at LIP
  - Start from coincidence L1 and AFP
  - Reconstruct HLT jets
    - pT threshold on jets
  - Reconstruct AFP tracks
    - Require two good tracks
    - Match track kinematics to di-jet system
  - Reconstruct proton vertex using ToF
    - Match to primary vertex reconstructed with ID tracks
- Can be the base for new AFP based triggers



#### **CEP dijet expectations at ATLAS**

#### ATL-PHYS-PUB-2015-003



Dominant uncertainties from combinatorial background (ND events)

Improvements require

- improved background measurements
- Good timing resolution

#### **Other physics topics**

- Diffractive jets with ALFA
- Charged particle distributions in diffractive events

\$ 0.2

N, vk

0.1

- Single diffraction at 13 TeV
- Exclusive dilepton production
- Exclusive pion production
- Strange production in diffractive events
- And more results to come...



section

Cross



#### Standard Model Production Cross Section Measu

PP Jets

w

z

tī

νν γγ Η

## Quartic gauge boson couplings

- AFP converts the LHC in a photon-photon collider!
- Triple and Quartic Gauge Boson Couplings introduced in the SM due to the non abelian nature of the EW symmetry
- Very precise predictions:
  - WWWW, γγWW, WWZZ exist
  - ZZZZ,  $\gamma\gamma$ ZZ: only at loop level
  - Might be modified by BSM physics
- Exclusive production
  - Match kinematic properties of central system and in AFP
  - Timing information important for vertex reconstruction and pile-up suppression





## Search for $\gamma\gamma \rightarrow \gamma\gamma$ anomalous couplings

- New physics at a mass scale Λ >> E accessible
  - Effective Lagrangian with new operators (dim-8 for photons)
    - Loops of heavy charged particles could contribute
    - Proporcional to (charge)<sup>4</sup>
      - Enhanced for particles with large charges (composite Higgs models)
    - Extra dimensions models, strongly coupled conformal extensions of the SM predict couplings ~10-<sup>13</sup>, 10-<sup>14</sup>
  - Backgrounds:
    - SM  $\gamma\gamma \rightarrow \gamma\gamma$  produced via gluon/quark loops,  $\gamma\gamma \rightarrow ee$
    - CEP  $\gamma\gamma$  production
    - CEP di-jets misidentified
    - Accidental coincidence of non-diffractive  $\gamma\gamma$  + diffractive proton interactions

$$\mathcal{L}_{\gamma\gamma\gamma\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu}$$





#### Search for $\gamma\gamma \rightarrow \gamma\gamma$ anomalous couplings



From M. Saimpert, E. Chapon, S. Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon; EPJ Web of Conferences 90, 06001 (2015)

#### Search for $\gamma\gamma \rightarrow \gamma\gamma$ anomalous couplings

$$\mathcal{L}_{\gamma\gamma\gamma\gamma} = \zeta_1^{T} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{T} F_{\mu\nu} F^{\rho\sigma} F^{\rho\sigma}$$

C

 Sensitivity reaching extra-dimensions models with 300 fb<sup>-1</sup> of collected luminosity!

| Luminosity        | $300 \text{ fb}^{-1}$          | $300 \text{ fb}^{-1}$   | $300 \text{ fb}^{-1}$ | $3000 \text{ fb}^{-1}$ |
|-------------------|--------------------------------|-------------------------|-----------------------|------------------------|
| pile up $(\mu)$   | 50                             | 50                      | 50                    | 200                    |
| coupling          | $\geq 1 \text{ conv. } \gamma$ | $\geq 1$ conv. $\gamma$ | all $\gamma$          | all $\gamma$           |
| $(GeV^{-4})$      | $5 \sigma$                     | 95% CL                  | 95% CL                | 95% CL                 |
| $\zeta_1$ f.f.    | $1. \cdot 10^{-13}$            | $9. \cdot 10^{-14}$     | $5. \cdot 10^{-14}$   | $2.5 \cdot 10^{-14}$   |
| $\zeta_1$ no f.f. | $3.5 \cdot 10^{-14}$           | $2.5 \cdot 10^{-14}$    | $1.5 \cdot 10^{-14}$  | $7. \cdot 10^{-15}$    |
| $\zeta_2$ f.f.    | $2.5 \cdot 10^{-13}$           | $1.5 \cdot 10^{-13}$    | $1. \cdot 10^{-13}$   | $4.5 \cdot 10^{-14}$   |
| $\zeta_2$ no f.f. | $7.5 \cdot 10^{-14}$           | $5.5 \cdot 10^{-14}$    | $3. \cdot 10^{-14}$   | $1.5 \cdot 10^{-14}$   |



EPJ Web of Conferences **90**, 06001 (2015)

## Quartic gauge boson couplings $\gamma\gamma$ WW, $\gamma\gamma$ ZZ

- Similar process
- Allow to impose limits on dim-6 operators:

$$\mathcal{L}_{6}^{0} = \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$
  
$$\mathcal{L}_{6}^{C} = \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+}) - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

CERN-LHCC-2011-012

| Couplings         | OPAL limits     | Sensitivity @ $\mathcal{L} = 30$ (200) fb <sup>-1</sup> |                         |
|-------------------|-----------------|---------------------------------------------------------|-------------------------|
|                   | $[GeV^{-2}]$    | $5\sigma$                                               | 95% CL                  |
| $a_0^W/\Lambda^2$ | [-0.020, 0.020] | 5.4 10 <sup>-6</sup>                                    | $2.6  10^{-6}$          |
|                   |                 | $(2.7 \ 10^{-6})$                                       | $(1.4 \ 10^{-6})$       |
| $a_C^W/\Lambda^2$ | [-0.052, 0.037] | $2.0 \ 10^{-5}$                                         | 9.4 10 <sup>-6</sup>    |
|                   |                 | (9.6 10 <sup>-6</sup> )                                 | $(5.2 \ 10^{-6})$       |
| $a_0^Z/\Lambda^2$ | [-0.007, 0.023] | $1.4  10^{-5}$                                          | 6.4 10 <sup>-6</sup>    |
|                   |                 | $(5.5 \ 10^{-6})$                                       | $(2.5 \ 10^{-6})$       |
| $a_C^Z/\Lambda^2$ | [-0.029, 0.029] | $5.2 \ 10^{-5}$                                         | 2.4 10 <sup>-5</sup>    |
|                   |                 | (2.0 10 <sup>-5</sup> )                                 | (9.2 10 <sup>-6</sup> ) |

- Improve LEP sensitivity by more than 4 orders of magnitude
- AFP improves the results obtained with central detector only by 2 orders of magnitude
- Reaches the sensitivity needed for extradimensions models!!

# Quartic gauge boson couplings $\gamma\gamma$ WW, $\gamma\gamma$ ZZ

- Similar process
- Allow to impose limits on dim-6 operators:

$$\mathcal{L}_{6}^{0} = \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$
  
$$\mathcal{L}_{6}^{C} = \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+}) - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

CERN-LHCC-2011-012

| Couplings         | OPAL limits        | Sensitivity @ $\mathcal{L} = 30$ (200) fb <sup>-1</sup> |                         |
|-------------------|--------------------|---------------------------------------------------------|-------------------------|
|                   | $[{\sf GeV}^{-2}]$ | $5\sigma$                                               | 95% CL                  |
| $a_0^W/\Lambda^2$ | [-0.020, 0.020]    | 5.4 10 <sup>-6</sup>                                    | 2.6 10 <sup>-6</sup>    |
|                   |                    | $(2.7 \ 10^{-6})$                                       | $(1.4 \ 10^{-6})$       |
| $a_C^W/\Lambda^2$ | [-0.052, 0.037]    | $2.0 \ 10^{-5}$                                         | 9.4 10 <sup>-6</sup>    |
|                   |                    | (9.6 10 <sup>-6</sup> )                                 | (5.2 10 <sup>-6</sup> ) |
| $a_0^Z/\Lambda^2$ | [-0.007, 0.023]    | $1.4  10^{-5}$                                          | 6.4 10 <sup>-6</sup>    |
|                   |                    | $(5.5 \ 10^{-6})$                                       | (2.5 10 <sup>-6</sup> ) |
| $a_C^Z/\Lambda^2$ | [-0.029, 0.029]    | 5.2 10 <sup>-5</sup>                                    | 2.4 10 <sup>-5</sup>    |
|                   |                    | (2.0 10 <sup>-5</sup> )                                 | (9.2 10 <sup>-6</sup> ) |

Current CMS limits using forward p tagging

$$-0.00015 < a_0^W / \Lambda^2 < 0.00015 \,\text{GeV}^{-2} -0.0005 < a_C^W / \Lambda^2 < 0.0005 \,\text{GeV}^{-2}$$

$$(a_C^W / \Lambda^2 = 0, \Lambda_{\text{cutoff}} = 500 \,\text{GeV}),$$
  
 $(a_0^W / \Lambda^2 = 0, \Lambda_{\text{cutoff}} = 500 \,\text{GeV}).$ 

#### **Flavour Changing Neutral Currents in top production**

- FCNC top quark interactions strongly suppressed in the SM
  - Can be considerably enhanced in New Physics





- Probing utγ and ctγ couplings
- Single diffractive mode
- Main irreducible backgrounds: γp interactions producing a W+jets
- Complements other analysis done at ATLAS

#### Search for dark matter

- SUSY compressed mass scenario
  - Small mass splitting between neutralino approximation Need dedicated triggers!
    - small MET, low lepton momentup
- Photo-production of electrows
  - Well defined initial state
  - Clear signatures!
- Truth-level study

precise mass measurement



1812.04886 [hep-ph] V. Khoze, L. Harland-Lang, M. Ryskin, and M. Tasevsky

|           | $5 < p_{T,l_1,l_2} < 40 \text{ GeV}$                          | $ \eta_{l_1,l_2}  < 2.5 \ (4.0)$                          |
|-----------|---------------------------------------------------------------|-----------------------------------------------------------|
|           | Aco $\equiv 1 -  \Delta \phi_{l_1 l_2} /\pi > 0.13 \ (0.095)$ | $2 < m_{l_l l_2} < 40 {\rm GeV}$                          |
| Di-lepton | $\Delta R(l_1, l_2) > 0.3$                                    | $ \eta_{l_1} - \eta_{l_2}  < 2.3$                         |
|           | $\bar{\eta} \equiv  \eta_{l_1} + \eta_{l_2} /2 < 1.0$         | $  p_{\vec{I}l_1}  -  p_{\vec{I}l_2}   > 1.5 \text{ GeV}$ |
|           | $W_{\rm miss} > 200 { m ~GeV}$                                |                                                           |
| FPD       | $0.02 < \xi_{1,2} < 0.15$                                     | $p_{T,\text{proton}} < 0.35 \text{ GeV}$                  |
| No-charge | No hadronic activity                                          | z-veto                                                    |

| Event yields /                      |                  | $\langle \mu \rangle_{PU}$ |           |
|-------------------------------------|------------------|----------------------------|-----------|
| $\mathcal{L} = 300 \text{ fb}^{-1}$ | 0                | 10                         | 50        |
| Excl. sleptons                      | 0.6-3.9          | 0.5 - 3.3                  | 0.3 - 1.9 |
| Excl. $l^+l^-$                      | 1.4              | 1.2                        | 0.7       |
| Excl. $K^+K^-$                      | $\sim 0$         | $\sim 0$                   | $\sim 0$  |
| Excl. $W^+W^-$                      | 0.7              | 0.6                        | 0.3       |
| Excl. $c\bar{c}$                    | $\sim 0$         | $\sim 0$                   | $\sim 0$  |
| Excl. gg                            | $\sim 0$         | $\sim 0$                   | $\sim 0$  |
| Incl. ND jets                       | $\sim 0(\sim 0)$ | 0.1(0.1)                   | 1.8(2.4)  |

45

#### Conclusions

- Forward proton tagging enlarges the physics topics of ATLAS
  - Single diffraction, central diffraction, ...
  - Searches for anomalous quartic gauge boson couplings, dark matter, FCNC in top quark production, ...
- The Portuguese ATLAS group has contributed to
  - Fibres preparation for ALFA
  - Detector control system (ALFA, AFP)
  - Exclusive trigger implementation and performance
- Preparations for the Run 3 are going
  - Expect a wealth of data to analyse
  - Small group of people —> help is needed!



#### Acknowledgments



# Backup



 $\sigma_{\text{tot}} = 96.07 \pm 0.18 \text{ (stat.)} \pm 0.85 \text{ (exp.)} \pm 0.31 \text{ (extr.) mb}$   $\sigma_{\text{el}} = 24.33 \pm 0.04 \text{ (stat.)} \pm 0.39 \text{ (syst.) mb}$  $\sigma_{\text{inel}} = 71.73 \pm 0.15 \text{ (stat.)} \pm 0.69 \text{ (syst.) mb}$  49

#### **Difractive dissociation**



#### Distributions before unfolding

#### **Difractive dissociation**

#### Contro regions





(f) Control Region 2

## **CEP di-jets**

Table 2: Requirements used to separate exclusive jet signal from backgrounds.

| Requirement                                                                                                                  | Value                             |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Two good quality leading jets with the transverse momentum of the leading jet.                                               | $  p_T > 150 \text{ GeV/c}$       |
| Distance between the hard interaction vertex reconstructed by ATLAS and from the one obtained from the AFP time measurement. | $ \Delta z  < 3.5 \text{ mm}$     |
| Azimuthal angle between two leading jets.                                                                                    | $  2.9 < \Delta \phi < 3.3$       |
| Difference of rapidity of the jet system and rapidity of the proton system.                                                  | $ y_{jj} - y_X  < 0.075$          |
| Ratio of mass of the jet system to missing mass.                                                                             | $0.9 < \frac{m_{jj}}{m_X} < 1.15$ |
| Missing mass.                                                                                                                | $\mid m_X < 550 \text{ GeV/c}^2$  |
| Mass fraction which aims to reduce the effects of hard final state radiation.                                                | $0.9 < R_j < 1.3$                 |
| Number of tracks outside of the jet system in $\eta$ .                                                                       | $n_{trk}^{eta} < 5$               |
| Number of tracks perpendicular to the leading jet in $\phi$ .                                                                | $n_{trk}^{phi} < 2$               |