12thMPI at LHC

summary of the experimental talks in working group 4 small × and diffraction

Albert Frithjof Bursche

South China Normal University

October 15, 2021

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣……

jet lepton correlations

H1 @ HERA

Results

H1 was one of two multipurpose experiments at HERA.

For this talk: 2006-2007 data, 136 pb⁻¹, 320 GeV

I'll present a measurement of the electron-jet inbalance

Parton shower Monte Carlo programs also provide excellent agreement with the data across the spectra.

(a) < (a) < (b) < (b)

October 15, 2021 2/11

э

publish unbinned data

- Due to the unfolding method the result is not intrinsically binned
- Infrastructure to publish such data is needed

Classification for reweighting

Neural networks are naturally unbinned and readily process highdimensional data.

We use a trick whereby classifiers can be repurposed as reweighters

N.B. the distribution is binned for illustration, but the reweighting is unbinned.

leptoproduction of ρ mesons

- 3

イロト 不得 トイヨト イヨト

leptoproduction of ρ mesons

13

Effective Pomeron trajectory

\Rightarrow Clear non-linearity at large |t|

Albert Bursche (South China Normal University)

MPI summaries

October 15, 2021 5/11

Giulia Manca

ultra peripheral collisions - ALICE and LHCb

イロト 不得下 イヨト イヨト

light by light - CMS and Atlas

Albert Bursche (South China Normal University)

MPI summaries

October 15, 2021 7/11

イロト イボト イヨト イヨト 三日

point five

Albert Bursche (South China Normal University)

MPI summaries

October 15, 2021 8/11

э

single diffractive jets

MPI summaries

イロト 不得下 イヨト イヨト

exclusive dilepton production with tagged protons

イロト イヨト イヨト イヨト

long lived particles

BCs 1, 4-11: LLPs at FASER and FASER2

 \ast Run-3 integrated luminosity is enough for FASER to discover new physics for some of the Benchmark Cases.

* FPF will provide space to upgrade FASER (R = 10 cm, L = 1.5 m) to FASER2 (R = 1.0 m, L = 5 m), either greatly enhancing sensitivity (e.g. for A' - visible mode) or by providing new prospects (e.g. for *S*), complementary to other experiments.

ヘロト 人間 ト 人 ヨト 人 ヨト

long lived particles

The Forward Physics Facility @ HL-LHC

A new large infrastructure, capable of simultaneously hosting a suite of experiments dealing with forward ν and BSM particles.

- Access possible during LHC operation
- Easier access than in LHC side caverns.
- It might be designed around the need of the experiments.

	May 25th, 2021	6/21		May 25th, 2021	7 / 21

3

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

Summary WG4: theory talks

Martin Hentschinski

Universidad de las Americas Puebla Ex-Hacienda Santa Catarina Martir S/N San Andrés Cholula 72820 Puebla, Mexico martin.hentschinski@gmail.com

UDLAP

12th International Workshop on Multi-Parton-Interactions at the LHC

With a tendency towards EIC

- Exclusive Vector Mesons at HERA and EIC
- SuperChic and photon-photon process
- Parton Distribution Functions
- Future MPI at the Electron Ion Collider (and Color Glass Condensate)

Franceso G. Celiberto: Accessing the proton UGD via exclusive polarized ρ -meson leptoproduction at HERA and the EIC

A factorization...of factorizations

BFKL factorization

3.0 Forward mesons

 $\gamma \rightarrow \rho$ impact factor

 $\Phi^{\gamma^* \to \rho} \propto \int_0^1 \mathrm{d}z \, T_H^{\gamma^* \to \rho}(z, \kappa_T, Q, \mu_R, \mu_F) \, \phi^{\lambda_\rho}(z, \mu_F)$

Collinear convolution \Leftrightarrow large κ_T (!)

* $\gamma_L^* \rightarrow \rho_L$ transition:

 $\frac{1}{\kappa_T^2} \Phi^{\gamma_L^* \to \rho_L} \sim constant$

* $\gamma_T^* \rightarrow \rho_T$ transition:

$$\frac{1}{\kappa_T^2} \Phi^{\gamma_T^* \to \rho_T} \sim \ln \frac{\kappa_T^2}{Q^2}$$

at the LHC: the role of hadron-hadron interactions

PbPb)

Lucian Harland-Lang: Elastic photon-initiated production

Data/theory discrepancy in dilepton channel (pp &

- Natural candidate (at first): model for survival ----factor
- Careful study: seems not to be the case
- Problem to be sorted out

Dependence on the photon virtuality Q^2 :

Exclusive forward ρ -meson production at HERA

[A.D. Bolognino, F.G.C., D.Yu. Ivanov, A. Papa (2018)] (extension to ϕ -meson emissions) \mathscr{O} [A.D. Bolognino, A. Szczurek, W. Schäfer (2020)] A.D. Bolognino, PhD Thesis (2021) (in this slide) 🔗 [A.D. Bolognino, F.G.C., D.Yu. Ivanov, A. Papa, W. Schäfer, A. Szczurek (2021)] 10

3.0 Forward mesons

Chris A. Flett: Small x gluon PDF from LHCb exclusive J/Psi data

- NLO accuracy - Huge differences between different PDF sets in the LHCb region

> [dn] (q ψ/L α(γ p

Towards the bigger picture

Plot demonstrates good scale stability of our NLO predictions in LHCb regime Predictions at optimal scale (solid) agree better with HERA data

CAF, S.P.Jones, A.D.Martin, M.G.Ryskin, T.Teubner, 1907.06471 & 1908.08398

Diversity between predictions based on current global PDFs in unconstrained phase space -> important message

Repeat Disclaimer:

Convoluting with existing global partons. Here, MMHT14, NNPDF3.0 & CT14

$$\frac{\text{Re}\mathcal{M}}{\text{Im}\mathcal{M}} \sim \frac{\pi}{2}\lambda = \frac{\pi}{2}\frac{\partial \ln \text{Im}\mathcal{M}/W^2}{\partial \ln W^2} \text{ with } \mathcal{M} \sim x^{-\lambda}$$

Strategy: - combine HERA data and LHCb data

Extraction of low x gluon PDF via exclusive J/psi

Left Fit a low x gluon PDF ansatz to the data **Approach I:**

Right Approach 2: Bayesian reweight current global PDF analyses

	λ	n	$\chi^2_{ m min}$	$\chi^2_{ m min}/{ m d.o.f}$
NNPDF3.0	0.136	0.966	44.51	1.04
MMHT14	0.136	1.082	47.00	1.09
CT14	0.132	0.946	48.25	1.12

 $xg^{\text{new}}(x,\mu_0^2) = nN_0 (1-x) x^{-\lambda}$

lambda = 0.136 + - 0.006n = 0.966 +/- 0.025

CAF, A.D. Martin, M.G. Ryskin, T. Teubner, 2006. 13857

 $(g(x, \mu^2 = 2.4 \text{ GeV}^2))$

Mark Sutton: Parton Distribution functions: measurements and interpretations PDF uncertainty important element of LHC uncertainties

10-3

EPJ C77 (2017) 367

Hessian uncertainties CMS Hessian uncertainties × $\mu_{f}^{2} = 1.9 \text{ GeV}^{2}$ CMS $\mu_{f}^{2} = m_{W}^{2}$ 1.5 ABMP16NLO NLO fit 0.5 W+c data 10 -3 ð $Q^2 = 1.9 \text{ GeV}^2$ ATLAS 1.8 - H MMHT14 profiled s+s)/(ū+d)(x, → CT14 profiled $s(x) + \overline{s}(x)$ Inclusive W, Z data: 0.8 0.6 2016 analysis after profiling 0.4 x^{10⁻¹} 10⁻² 10⁻³ 10⁻¹ X 12

The 12th International Workshop on Multi-Parton Interactions, Lisbon, 2021

Evidence for intrinsic charm?

LHCb <u>arxiv:2109.08084</u>

radiation (g \rightarrow ccbar). proton:

- Previous measurements hampered by nuclear effects
- Intrinsic charm only excluded for contributions above ~ 1%
- Full Run 2 pp dataset
- $Z \rightarrow \mu\mu$ events + one jet with $p_T > 20 \text{ GeV}$
- Charm jets identified using a displaced vertex tagger

$$\mathcal{R}_j^c \equiv \sigma(Zc) / \sigma(Zj)$$

• Investigate possibility of Intrinsic Charm in the proton

17

Heikki Mäntysaari: The Electron Ion Collider and Gluon imaging using azimuthal correlations at EIC

Deeply Virtual Compton Scattering*

$$\mathcal{M}_{\pm 1,\mp 1} \sim \int_{\mathbf{b}} e^{-i\mathbf{\Delta}\cdot\mathbf{b}} \int_{\mathbf{r}} e^{\pm 2i\phi_{\mathbf{r}\Delta}} D(\mathbf{r},\mathbf{b}) \int_{z} e^{-i\delta\cdot\mathbf{r}} z \bar{z} Q \varepsilon K_{1}(\varepsilon r) \varepsilon' K_{1}(\varepsilon' r)$$

Two sources of correlations between \mathbf{r} (which knows about the electron in DIS) and $\boldsymbol{\Delta}$

- Intrinsic: correlation between \mathbf{r} and \mathbf{b} in the dipole $D(\mathbf{r}, \mathbf{b})$
 - Related to elliptic gluon GPD Hatta, Yuan, Xiao, 1703.02085
- Kinematic: off-forward phase $e^{-i\delta \cdot \mathbf{r}}$ with $\delta = (z \overline{z})\Delta/2$
 - Different propagation axis, mixes polarizations

Heikki Mäntysaari (JYU)

EIC and gluon imaging

Oct 13, 2021 / MPI@

Azimuthal correlations in DVCS in DIS

Full calculation at $Q'^2 = 0$ including the photon flux f(y) in 2011.02464

In agreement with hatta, Yuan, Xiao, 1703.02085

$$\frac{\mathrm{d}\sigma^{ep \to e\gamma p}}{\mathrm{d}t \mathrm{d}\phi_{e\Delta}} \sim f_{TT}(y) [\mathcal{M}_{\pm 1,\pm 1}^2 + \mathcal{M}_{\pm 1,\mp 1}^2] + f_{TT,\mathrm{flip}}(y) \mathcal{M}_{0,\pm 1}^2 \\ - f_{LT}(y) \mathcal{M}_{0,\pm 1} [\mathcal{M}_{\pm 1,\pm 1} + \mathcal{M}_{\pm 1,\mp 1}] \mathrm{cos}(\phi_{e\Delta}) \\ + f_{TT,\mathrm{flip}}(y) \mathcal{M}_{\pm 1,\pm 1} \mathcal{M}_{\pm 1,\mp 1} \mathrm{cos}(2\phi_{e\Delta})$$

EIC and gluon imaging

The $\cos(2\phi_{e\Delta})$ modulation in $ep \rightarrow e\gamma p$: Access to \mathbf{r}, \mathbf{b} correlations in the dipole Dvia $\mathcal{M}_{\pm 1,\mp 1}$ \Rightarrow elliptic gluon GPD / Wigner distribution

y is the inelasticity in DIS

Heikki Mäntysaari (JYU)

Figure: CLAS

Farid Salazar: Forward dijets at the EIC beyond TMDs

Dijet production beyond TMDs

Computation in the CGC: Wilson Lines

Dominguez, Marquet, Xiao, Yuan (2011)

LO diagram for $q\bar{q}$ production in the CGC EFT

Amplitude (modulo leptonic part):

$$\mathcal{M}_{\mathrm{LO}}^{\lambda\sigma\sigma'} = \Psi^{\gamma_{\lambda}^* \to q\bar{q}}(Q, \mathbf{r}_{xy}, z_q) \otimes_{\mathrm{LO}} \left[1 - V(\boldsymbol{x}_{\perp}) V^{\dagger}(\boldsymbol{y}_{\perp}) \right]$$

perturbatively computable

non-perturbative

$$\otimes_{\mathrm{LO}} \equiv rac{e e_f q^-}{\pi} \int \mathrm{d}^2 oldsymbol{x}_\perp \mathrm{d}^2 oldsymbol{y}_\perp e^{-ioldsymbol{k_{1\perp}}\cdotoldsymbol{x}_\perp} e^{-ioldsymbol{k_{2\perp}}\cdotoldsymbol{y}_\perp}$$

For more on CGC see Alex's talk on Tuesday.

Dense gluon field $A_{\rm cl} \sim 1/g$ needs resummation of multiple gluon interactions

$$j \xrightarrow{p} i + j \xrightarrow{q} f \xrightarrow{p} i \equiv j \xrightarrow{q} f \xrightarrow{p} i$$

$$V_{ij}(\boldsymbol{x}) = P \exp\left\{ig \int dx^{-} A_{cl}^{+,a}(\boldsymbol{x}, x^{-})t^{a}\right\}$$

Dijet cross-section in the CGC will contain dipoles and quadrupole:

$$\begin{split} & \frac{1}{N_c} \left\langle \text{Tr} \left[V(\boldsymbol{x}_{\perp}) V^{\dagger}(\boldsymbol{y}_{\perp}) \right] \right\rangle_Y \\ & \frac{1}{N_c} \left\langle \text{Tr} \left[V(\boldsymbol{x}_{\perp}) V^{\dagger}(\boldsymbol{y}_{\perp}) V(\boldsymbol{y}_{\perp}') V^{\dagger}(\boldsymbol{x}_{\perp}') \right] \right\rangle_Y \end{split}$$

7

Dijet production beyond TMDs

 Q^2 and P_{\perp} dependence of genuine saturation

R. Boussarie, H. Mäntysaari, FS, B. Schenke (2021)

At exactly back-to-back $k_\perp \approx 0$ the ratio of CGC/TMD is sensitive to genuine twists

Matteo Rinaldi: Double parton scattering via photonproton interactions and the transverse proton structure

In order to study the impact of the DPS contribution to a process initiated via photon-proton interactions we evaluated the 4-JET photoproduction at HERA (S. Checkanov et al. (ZEUS), Nucl. Phys B792, 1 (2008))

For this first investigation, we make use of the POCKET FORMULA: $d\sigma_{\rm DPS}^{4j} = \frac{1}{2} \sum_{\rm ab,cd} \int dy \ dQ^2 \frac{f_{\gamma/e}(y,Q^2)}{\sigma_{\rm eff}^{\gamma p}(Q^2)}$ $\times \int dx_{p_a} dx_{\gamma_b} f_{a/p}(x_{p_a}) f_{b/\gamma}(x_{\gamma_b}) d\hat{\sigma}_{ab}^{2j}(x_{p_a}, x_{\gamma_b}) \begin{cases} & \text{SPS*} \\ x \\ & \text{SPS} \end{cases} \\ \times \int dx_{p_c} dx_{\gamma_d} f_{c/p}(x_{p_c}) f_{d/\gamma}(x_{\gamma_d}) d\hat{\sigma}_{cd}^{2j}(x_{p_c}, x_{\gamma_d}) \end{cases} \begin{cases} & \text{SPS*} \\ x \\ & \text{SPS} \end{cases}$ γ-PDF (M. Gluck et al. PRD46, 1973 (1992)

(J. Pumplin et al. JHEP 07, 012 (2002))

*Single Parton Scattering (SPS)

Matteo Rinaldi

Dependence of $\sigma^{\gamma p}_{
m eff}(Q^2)$ on Q^2 can unveil the mean distance of pardons in the proton

