Event shapes and jets in e^+e^- and pp collisions

Mike Sas

Yale University

October 12, 2021

12th International workshop on Multiple Partonic Interactions at the LHC

M. Sas, J. Schoppink, Nuclear Physics A vol. 1011, July 2021. https://arxiv.org/abs/2101.12367

in part funded by:

Properties of the collision systems

- Annihilation process: all of the center of mass energy is used
- Dominated by di-jet production

- Hard processes from partons with some momentum fraction of the proton
- Underlying event from multi-parton interactions (MPI)

Main question: What does the shape of the event tell us about the physics of the collision?

 e^+e^- collisions: Can it discriminate between different jet topologies?

pp collisions: Can it discriminate between jet-like events and events that are dominated by soft production from the underlying event?

Transverse sphericity as the event shape observable

The transverse sphericity is calculated using

$$\mathcal{S}_{\mathrm{T}} = rac{2\lambda_2}{\lambda_2 + \lambda_1},$$
 (1)

where λ_1 and λ_2 , with $\lambda_1 > \lambda_2$, are the two eigenvalues of the transverse momentum matrix.

Analysis steps:

- Generate simulation data
- Calculate the sphericity distributions
- Simultaneously run a jet-finder algorithm
- Investigate S_T as function of $N_{\rm jets}$
- Calculate the difference in the jet populations when selecting spherical vs pencil-like events

Jet finder settings (FastJet package):

• anti- k_T with R=0.4 and $E_{\min}=10$ GeV

System	\sqrt{s}	PYTHIA8.1 settings						
e^+e^-	91 GeV	Z decay to quarks						
рр	200 GeV	Monash tune, MPI-ON						
рр	200 GeV	Monash tune, MPI-OFF						
рр	13 TeV	Monash tune, MPI-ON						
рр	13 TeV	Monash tune, MPI-OFF						

Transverse sphericity as the event shape observable

Example of a pencil-like pp event at 13 TeV

The transverse sphericity is calculated using

$$S_{\mathrm{T}} = rac{2\lambda_2}{\lambda_2 + \lambda_1},$$
 (1)

where λ_1 and λ_2 , with $\lambda_1 > \lambda_2$, are the two eigenvalues of the transverse momentum matrix.

Transverse sphericity distributions

System	\sqrt{s}	PYTHIA8.1 settings							
e^+e^-	91 GeV	Z decay to quarks							
рр	200 GeV	Monash tune, MPI-ON							
рр	200 GeV	Monash tune, MPI-OFF							
рр	13 TeV	Monash tune, MPI-ON							
рр	13 TeV	Monash tune, MPI-OFF							

Observations:

- e^+e^- collisions much more pencil-like compared to pp collisions
- No large beam energy dependence in pp
- MPI increases $< S_T >$

System	\sqrt{s}	PYTHIA8.1 settings
e^+e^-	91 GeV	Z decay to quarks
рр	200 GeV	Monash tune, MPI-ON
рр	200 GeV	Monash tune, MPI-OFF
рр	13 TeV	Monash tune, MPI-ON
рр	13 TeV	Monash tune, MPI-OFF

Observations in e^+e^- collisions:

- Low S_T dominated by di-jet production (in red)
- Possible to select certain jet topologies by selecting on S_T !

System	\sqrt{s}	PYTHIA8.1 settings								
e^+e^-	91 GeV	Z decay to quarks								
рр	200 GeV	Monash tune, MPI-ON								
рр	200 GeV	Monash tune, MPI-OFF								
рр	13 TeV	Monash tune, MPI-ON								
рр	13 TeV	Monash tune, MPI-OFF								

Observations in pp collisions:

- Inclusive distribution pprox ($N_{
 m jets}=0$)
- In general many less jets per event
- Impossible to meaningfully enhance the jet population by selecting on S_T !
- Similar picture for the MPI-OFF case; $< S_T >$ reduced
- Same for higher beam energies; higher multiplicities increases S_T

Mike Sas (Yale University)

System	\sqrt{s}	PYTHIA8.1 settings								
e^+e^-	91 GeV	Z decay to quarks								
рр	200 GeV	Monash tune, MPI-ON								
рр	200 GeV	Monash tune, MPI-OFF								
рр	13 TeV	Monash tune, MPI-ON								
рр	13 TeV	Monash tune, MPI-OFF								

Observations in pp collisions:

- Inclusive distribution pprox ($N_{
 m jets}=0$)
- In general many less jets per event
- Impossible to meaningfully enhance the jet population by selecting on S_T!
- Similar picture for the MPI-OFF case; $< S_T >$ reduced
- Same for higher beam energies; higher multiplicities increases S_T

Mike Sas (Yale University)

System	\sqrt{s}	PYTHIA8.1 settings						
e^+e^-	91 GeV	Z decay to quarks						
рр	200 GeV	Monash tune, MPI-ON						
рр	200 GeV	Monash tune, MPI-OFF						
рр	13 TeV	Monash tune, MPI-ON						
рр	13 TeV	Monash tune, MPI-OFF						

Observations in pp collisions:

- Inclusive distribution pprox ($N_{
 m jets}=0$)
- In general many less jets per event
- Impossible to meaningfully enhance the jet population by selecting on S_T !
- Similar picture for the MPI-OFF case; $< S_T >$ reduced
- Same for higher beam energies; higher multiplicities increases S_T

System	\sqrt{s}	PYTHIA8.1 settings							
e^+e^-	91 GeV	Z decay to quarks							
рр	200 GeV	Monash tune, MPI-ON							
рр	200 GeV	Monash tune, MPI-OFF							
рр	13 TeV	Monash tune, MPI-ON							
рр	13 TeV	Monash tune, MPI-OFF							

Observations in pp collisions:

- Inclusive distribution pprox ($N_{
 m jets}=0$)
- In general many less jets per event
- Impossible to meaningfully enhance the jet population by selecting on S_T!
- Similar picture for the MPI-OFF case; < S_T > reduced
- Same for higher beam energies; higher multiplicities increases S_T

So what physics are we actually selecting when considering pencil- and spherical-like events?

What about the p_T of the leading parton..

- In e^+e^- , low S_T selects di-jets, peaking for $p_T \approx \sqrt{s}/2$
- In pp collisions (MPI-ON), p_{T,leading parton} increases for spherical events

Transverse momentum of the leading parton

So what physics are we actually selecting when considering pencil- and spherical-like events?

What about the p_T of the leading parton..

- In e^+e^- , low S_T selects di-jets, peaking for $p_T\approx \sqrt{s}/2$
- In pp collisions (MPI-ON), *p*_{T,leading parton} increases for spherical events

Transverse momentum of the leading parton

So what physics are we actually selecting when considering pencil- and spherical-like events?

What about the p_T of the leading parton..

- In e^+e^- , low S_T selects di-jets, peaking for $p_T\approx \sqrt{s}/2$
- In pp collisions (MPI-ON), *p*_{T,leading parton} increases for spherical events

Transverse momentum of the leading parton

So what physics are we actually selecting when considering pencil- and spherical-like events?

What about the p_T of the leading parton..

- In e^+e^- , low S_T selects di-jets, peaking for $p_T \approx \sqrt{s}/2$
- In pp collisions (MPI-ON), *p*_{T,leading parton} increases for spherical events

Should we consider spherical pp collisions as being more jetty than pencil-like events?

So what physics are we actually selecting when considering pencil- and spherical-like events?

- $N_{\rm MPI}$ peaks at $N_{\rm MPI} = 0$ for both sphericity selections
- Large increase in $N_{\rm MPI}$ for spherical collisions
- Selecting events with low and high particle multiplicity has even higher discriminating power in $N_{\rm MPI}$

So what physics are we actually selecting when considering pencil- and spherical-like events?

- $N_{\rm MPI}$ peaks at $N_{\rm MPI} = 0$ for both sphericity selections
- Large increase in $N_{\rm MPI}$ for spherical collisions
- Selecting events with low and high particle multiplicity has even higher discriminating power in $N_{\rm MPI}$

So what physics are we actually selecting when considering pencil- and spherical-like events?

- $N_{\rm MPI}$ peaks at $N_{\rm MPI} = 0$ for both sphericity selections
- Large increase in $N_{\rm MPI}$ for spherical collisions
- Selecting events with low and high particle multiplicity has even higher discriminating power in $N_{\rm MPI}$

So what physics are we actually selecting when considering pencil- and spherical-like events?

- $N_{\rm MPI}$ peaks at $N_{\rm MPI} = 0$ for both sphericity selections
- Large increase in $N_{\rm MPI}$ for spherical collisions
- Selecting events with low and high particle multiplicity has even higher discriminating power in $N_{\rm MPI}$

So what physics are we actually selecting when considering pencil- and spherical-like events?

What about the number of multi parton interactions ($N_{\rm MPI}$)..

- $N_{\rm MPI}$ peaks at $N_{\rm MPI} = 0$ for both sphericity selections
- Large increase in $N_{\rm MPI}$ for spherical collisions
- Selecting events with low and high particle multiplicity has even higher discriminating power in $N_{\rm MPI}$

Putting this all together..

Summary

Yale

In this talk it was shown that S_T :

- Behaves as expected in e⁺e⁻ collisions; it is able to discriminate between different final state topologies
- Is unable to meaningfully enhance jet-like topologies in pp collisions at both RHIC and LHC energies, contrary to what is usually stated in papers
- Spherical pp collisions, on average, contain higher momentum parton fragmentations
- High correlation in pp collisions with $N_{\rm MPI}$, multiplicity correlates even better

Summary

In this talk it was shown that S_T :

- Behaves as expected in e⁺e⁻ collisions; it is able to discriminate between different final state topologies
- Is unable to meaningfully enhance jet-like topologies in pp collisions at both RHIC and LHC energies, contrary to what is usually stated in papers
- Spherical pp collisions, on average, contain higher momentum parton fragmentations
- High correlation in pp collisions with *N*_{MPI}, multiplicity correlates even better

Thanks for your attention!

For more information:

M. Sas, J. Schoppink, Nuclear Physics A, July 2021. https://arxiv.org/abs/2101.12367

Backup

Transverse sphericity as the event shape observable

The transverse sphericity is calculated using

$$S_{\rm T} = \frac{2\lambda_2}{\lambda_2 + \lambda_1},\tag{2}$$

where λ_1 and λ_2 , with $\lambda_1>\lambda_2,$ are the two eigenvalues of the transverse momentum matrix S^L_{xv} , which is given by

$$S_{Xy}^{L} = \frac{1}{\sum_{i} p_{T,i}} \sum_{i} \frac{1}{p_{T,i}} \begin{bmatrix} p_{X,i}^{2} & p_{X,i}p_{Y,i} \\ p_{Y,i}p_{X,i} & p_{Y,i}^{2} \end{bmatrix},$$
(3)

where $p_{T,i}$, $p_{x,i}$, and $p_{y,i}$, are the components of the momentum vectors of particle *i* in transverse, *x*, and *y* direction, respectively.

Analysis steps:

- Generate simulation data
- Calculate the sphericity distributions in various datasets
- Simultaneously run a jet-finder algorithm
- Investigate how S_T behaves as function of N_{iets}
- Calculate how the jet populations change by selecting spherical and pencil-like events

Jet finder settings (FastJet package):

Used datasets:

System	\sqrt{s}	PYTHIA8.1 settings
e^+e^-	91 GeV	Z decay to quarks
рр	200 GeV	Monash tune, MPI-ON
рр	200 GeV	Monash tune, MPI-OFF
рр	13 TeV	Monash tune, MPI-ON
рр	13 TeV	Monash tune, MPI-OFF

Backup

https://arxiv.org/abs/2101.12367

				Niets	(%), All		1	$N_{jets}(\%)$), pencil-like		$N_{jets}(\%)$, sphere-like				
Data Set	energy	MPI	0	1	2	3+	0	1	2	3+	0	1	2	3+	
е ⁺ е ⁻ pp pp pp pp	91 GeV 200 GeV 200 GeV 13 TeV 13 TeV	ON OFF ON OFF	$ \begin{array}{c} 16.1 \\ > 99.9 \\ > 99.9 \\ 85.5 \\ 93.9 \end{array} $	${ > 11.8 \\ < 0.01 \\ < 0.01 \\ 9.2 \\ 5.2 }$	$\begin{array}{r} 44.9 \\ < 0.01 \\ < 0.01 \\ 3.2 \\ 0.8 \end{array}$	$\begin{array}{c} 27.2 \\ < 0.01 \\ < 0.01 \\ 2.1 \\ 0.1 \end{array}$	$ \begin{array}{c} 1.9 \\ > 99.9 \\ > 99.9 \\ 93.1 \\ 83.6 \end{array} $	$5.9 \\ < 0.01 \\ 0.02 \\ 5.5 \\ 13.9$			58.8 > 99.9 > 99.9 83.9 99.2	$ \begin{array}{c} 11.0 \\ < 0.01 \\ < 0.01 \\ 8.7 \\ 0.6 \end{array} $	$ \begin{array}{c} 10.4 \\ < 0.01 \\ < 0.01 \\ 4.4 \\ 0.1 \end{array} $	${ \begin{array}{c} 19.8 \\ < 0.01 \\ < 0.01 \\ 3.0 \\ 0.1 \end{array} }$	

Reduced table:

			N _{iets} (%), All				N	jets(%)	, pencil-lik	e	$N_{jets}(\%)$, sphere-like			
Data Set	energy	MPI	0	[°] 1	2	3+	0	1	2	3+	0	1	2	3+
е ⁺ е ⁻ рр	91 GeV 13 TeV	ON	16.1 85.5	11.8 9.2	44.9 3.2	27.2 2.1	1.9 93.1	5.9 5.5	83.8 1.3	8.4 0.2	58.8 83.9	11.0 8.7	10.4 4.4	19.8 3.0

The cross section of $\sigma_{h_1h_2 \to a}$ represents the likelihood of colliding hadrons h_1 and h_2 , and producing a particle *a*. Assuming that the scattering processes are independent from the fragmentation of the produced partons, the cross section is factorisable and can be calculated as:

$$\sigma_{h_1h_2 \to a} = f_i^{h_1}(x_1, Q^2) f_j^{h_2}(x_2, Q^2) \otimes \sigma^{ij \to k}(x_1p_1, x_2p_2, Q^2) \otimes D_{k \to a}(z, Q^2),$$
(4)

where $f_i^{h_1}$ and $f_i^{h_2}$ are the parton distribution functions (PDFs) of the colliding particles, $\sigma^{ij \to k}$ the partonic cross sections., i.e. the chance that parton *i* and *j* produce the parton *k*, and $D_{k \to a}$ is the fragmentation function describing the production of particle *a* from parton *k*. The PDFs for protons and the PDFs for nuclei (nPDFs) give the average quark and gluon content of the nucleon (either free or bound in a nucleus), as function of the longitudinal momentum fraction *x* and momentum transfer Q^2 .