Parton distribution functions: measurements and interpretations

The University of Sussex

On behalf of the ATLAS, CMS and LHCb Collaborations

Preface

- The LHC has performed extremely well during Run 1 and Run 2
- Information on the internal structure of the proton from the parton distribution functions (PDFs)
- The LHC has unprecedented coverage of the kinematic plane, extending by several orders of magnitude
- The LHC experimental collaborations each have a large, and developing portfolio of precision measurements with the potential to constrain the PDFs in the proton
 - Concentrate only on constraints from some of the newer results from ATLAS, CMS and LHCb
- For LHC collisions with two momentum fractions, x_1 and x_2

$$\mathrm{d}\sigma_X = \sum_{i,j} \int \mathrm{d}x_1 \mathrm{d}x_2 \left[f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \right] \times \left[\hat{\sigma}_{ij \to X}(x_1, x_2, \mu_F^2) \right]$$

• The LHC provides unprecedented access to a previously unexplored region of phase space essential for the discovery and understanding of any new physics

Cast your minds back ...

- ... to the dark days at the turn of the century ...
- ... the best fits, naturally without LHC or HERA II data, but with HERA I and Tevatron data ...

Channel	$m_{W^+} - m_{W^-}$ [MeV]	Stat. Unc.	Muon Unc.	Elec. Unc.
$W \rightarrow e v$	-29.7	17.5	0.0	4.9
$W \rightarrow \mu \nu$	-28.6	16.3	11.7	0.0
Combined	-29.2	12.8	3.3	4.1

Different final states inform different subprocesses

- DIS data constrains quarks at low-x
 - Born level scattering off of quarks, one momentum parton fraction x $d\sigma_{\rm DIS} \sim (1 + (1 - y_{\rm Bj})^2) F_2(x, Q^2) - y_{\rm Bj}^2 F_L(x, Q^2)$ $F_2 = x \sum_q e_q^2(q(x) + \bar{q}(x))$
 - Sensitive to the gluon distribution through $\mathcal{O}(\alpha_s)$ corrections

• For LHC collisions with two momentum fractions, x_1 and x_2

$$d\sigma = \sum_{i,j} \int dx_1 \int dx_2$$

high E_T

- Electroweak boson production
 - Inclusive W, Z and asymmetries: **quark** flavour separation
 - Off peak Drell-Yan: u, d at high or low-x
 - W+charm: sensitivity to the **s-quark**
 - W, Z + jets (jet need not be unobserved)

 $f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \hat{\sigma}_{ij}(x_1, x_2, \mu_R^2)$

• Inclusive jets, dijet, and trijet production, ttbar, inclusive photon ...

all directly sensitive to the gluon distribution, the strong coupling, and the valence quarks at

- Large variability of the of the different predictions from different PDFs, the PDF uncertainty itself within the sets is extensive
 - Large potential for constraining the gluon PDF, particularly at large-x

CMS PDF Profile

- Q^2 X, ______⊃0.6[|] • 0.5 × 0.4 0.3 0.2 0.1 uncert. Fract. 6.0 **10⁻⁴**
- Fit the data by profiling the PDF fitting the data by allowing variations of the eigenvalues for the eigenvector PDFS from an existing PDF fit
 - For instance, CT14nlo and CT14nnlo
 - Use CMS inclusive jet data at 13 TeV and differential top data EPJC 80 (2020) 656 arXiv:1904.05237
- Small uncertainties
 - Uncertainties larger for the d valance
 - Gluon uncertainty large at larger x

M Sutton - The proton PDF including W+jet data at ATLAS

M Sutton - The proton PDF including W+jet data at ATLAS

CMS Standard Model QCD analysis at NLO SMP-21-006-pas

- Perform a simultaneous fit of the PDF, the strong coupling and the the top mass at NLO Comparison
 - Resulting PDF in fits including the CMS data demonstrate clear reduction in the gluon uncertainty
 - Expected similar or better improvement with a full fit at NNLO, as demonstrated by the profiling

 $lpha_{
m S}(m_Z) = 0.1177 \pm 0.0014$ (fit) ± 0.0022 (model and param.), $m_{
m t}^{
m pole} = 170.2 \pm 0.6$ (fit) ± 0.1 (model and param.) GeV.

• Fitted strong coupling and top mass consistent with world averages

CMS Standard Model + Effective **0**7 0.7 , , п ° Field Theory Fit • 0.5 × 0.4 0.3 0.2 0.1 0 1.05 1.05 ' 96.02t Fract **10⁻⁴** ີ (ດີ ເ ×100 δ 80 QCD analyses performed using Standard Model (SM) × • predictions at NLO, and additionally with Standard Model + 60 Contact Interaction (SMEFT) theory predictions **40** • The PDFs from SM and SMEFT fits agree within the 20

ť

- respective uncertainties • All CI models result in very similar PDFs, strong coupling and top mass values
- No statistically significant deviation from the SM observed

The proton is more strange than we imagined ...

- Strange quark density poorly known
 - Often assumed sbar ~ 0.5 dbar from $s \rightarrow Wc$ in NuTeV, CCFR data
 - Large c fragmentation and nuclear corrections uncertainties
- Early ATLAS epWZ12 fit to 2010 inclusive Z and W[±] data found an \bullet unsuppressed strangeness contribution

$$r_s = \frac{1}{2}(s+\bar{s})/\bar{d}$$

• Subsequent data $an(dxite) \pm 0.03$ (AS d) $\underline{d}_{0}^{0}C_{0}^{0}$ (S d) ta still $2(ugg) \pm 0.03$ (th) unsuppressed strange at low-x

0.2

×

ATLAS fit to the W+jet and Z+jet data at NNLO $_{JHEP 2107}$ (2021) 223

- Fit to the 8TeV V+jets data
- Detailed study of the correlated uncertainties between the jet and lepton reconstruction in each analysis
- Fit performed with NLO grids + NNLO k-factors
 - Grids available from ploughshare.web.cern.ch
- Refit inclusive boson data from 2016, with consistent methodology for comparison with new fit including inclusive boson and V+jets data

Jet energy scale [54]

Jet punchthrough [54]Jet resolution [54]Jet flavour compositionJet flavour response [54]Pile-up jet rejection (JW) E_T^{miss} scale [56] E_T^{miss} resolution [56]Electron energy scale [56]Electron trigger efficientElectron reconstructionElectron identification ofLuminosity [61, 62]WW background cross stateTop background cross state

Ι	7 TeV inclusive W, Z	8 TeV W + jets	8 TeV Z + jets
		JetScaleEff1	ATL_JESP1
	*	JetScaleEff2	ATL_JESP2
		JetScaleEff3	ATL_JESP3
		JetScaleEff4	ATL_JESP4
		JetScaleEff5	ATL_JESP5
		JetScaleEff6	ATL_JESP6
		JetScaleEta1	ATL_JESP7
		JetScaleEta2	ATL_JESP8
		JetScaleHighPt	ATL_JESP9
		JetScaleMC	ATL_JESP10
	JetScaleNPV	JetScalePileup1	ATL_PU_OffsetNPV
	JetScaleMu	JetScalePileup2	ATL_PU_OffsetMu
	_	JetScalepunchT	ATL_PunchThrough
	JetRes	JetResolution10	ATL_JER
n [54]	-	JetScaleFlav1Known	ATL_Flavor_Comp
4]	_	JetScaleFlav2	ATL_Flavor_Respon
VF) [55]	_	JetJVFcut	ATL_JVF
	MetScaleWen	METScale	-
	MetRes -	METResLong	_
		METResTrans	_
57]	*	ElScaleZee	ATL_ElecEnZee
ncy [58]	*	ElSFTrigger	ATL_Trig
n efficiency [59, 60]	*	ElSFReco	ATL_RecEff
efficiency [59, 60]	*	ElSFId	ATL_IDEff
	*	LumiUncert	ATL_lumi_2012_8Te
section [63]	*	XsecDibos	ATL_WW_xs
section [64]	*	ХѕесТор	ATL_ttbar_xs

- V+jets impact on d valence

Х Light quark asymmetry JHEP 2107 (2021) 223

- The original ATLASepWZ16 fit has a negative dbar ubar, with large uncertainties
- New fit with the V + jet data results has a positive (dbar ubar) distribution
 - More consistent with the fits from the global fitters, up to 0.1, but differs for x > 0.1where the fit has increased sensitivity to the V+jets data
 - Global fits include E866 data which seems in tension wit the new Seaquest / E906 data <u>Nature 590 (2021) 561</u>

Forward Z+charm from LHCb arxiv:2109.08084

- Proton charm content:
 - Extrinsic charm, from perturbative gluon radiation ($g \rightarrow ccbar$).
- Intrinsic charm (IC), valence-like c-content, proton:
 - luudcc>.
 - Predicted by Light Front QCD (LFQCD).
- Previous measurements hampered by nuclear effects
- Intrinsic charm only excluded for contributions above ~ 1%
- Full Run 2 pp dataset
- $Z \rightarrow \mu\mu$ events + one jet with $p_T > 20 \text{ GeV}$
- Charm jets identified using a displaced vertex tagger

 $\mathcal{R}_j^c \equiv \sigma(Zc) / \sigma(Zj)$

- Investigate possibility of Intrinsic Charm in the proton
 - Intrinsic charm suggests increased charm production in the very forward region
 - Very forward region not accessible at either ATLAS or CMS
 - Ideally suited for the LHCb forward detector configuration

Forward Z+charm from LHCb

Table 1: Definition of the fiducial region.

Z bosons	$p_{\rm T}(\mu) > 20 {\rm GeV}, 2.0 < \eta(\mu) < 4.5, 60 < m(\mu^+\mu^-) < 120 {\rm GeV}$
Jets	$20 < p_{\rm T}(j) < 100 {\rm GeV}, 2.2 < \eta(j) < 4.2$
Charm jets	$p_{\rm T}(c \text{ hadron}) > 5 \text{GeV}, \Delta R(j, c \text{ hadron}) < 0.5$
Events	$\Delta R(\mu, j) > 0.5$

- With the NLO analysis, suggestion of consistency with NO intrinsic charm at less forward rapidities ...
- But greater than 3σ excess observed over non-intrinsic charm contribution in the most forward rapidity bin, consistent with Intrinsic charm
- Interesting to see the effect of these data with the global fits

	$\mathcal{R}_{j}^{c}\left(\% ight)$
-2.75	$6.84 \pm 0.54 \pm 0.51$
-3.50	$4.05 \pm 0.32 \pm 0.31$
-4.50	$4.80 \pm 0.50 \pm 0.39$
-4.50	$4.98 \pm 0.25 \pm 0.35$

$$\equiv \sigma(Zc) / \sigma(Zj)$$

Fotal

8%

Looking forward ...

- An increasingly large portfolio of **precise data** from the LHC experiments is available
- This precision challenges the uncertainty of the theoretical predictions, themselves now becoming rather precise at NNLO and N3LO for inclusive W and Z production
- Progress in understanding the **correlated** experimental uncertainties is essential to exploit the **real potential** of the data
 - Many previous results, fits including top etc
- Can learn a lot by looking back, and updating fits with the newer data, or additional data sets
 - Complementary data from the LHC experiments needs to be considered
- LHC Run 3 is almost upon us
 - We need to be ready to meet the challenge of the newer, higher precision data that will be coming over the next few years
- We should perhaps be thankful that we live in such interesting times

