12th MPI at LHC

12th International workshop on Multiple Partonic Interactions at the LHC

11-15 October 2021 LIP Lisbon

A PYTHIA 8 Underlying Event

Tune for RHIC Energies

Matthew Kelsey (for the STAR Collaboration)
Wayne State University

Office of Science

Introduction

*P. Gunnellini et al.

Eur. Phys. J. C (2018) 78: 521

$$p_{T,0} = p_{T,0}^{Ref} \left(\frac{\sqrt{S}}{\sqrt{S_{Ref}}}\right)^{ecmPow}$$

PYTHIA 6 "STAR" tune adjusted power law extrapolation parameter (PARP(90)=0.24 \rightarrow 0.213) to match low-p_T π^{\pm} yields STAR Phys. Rev. D100, 052005 (2019)

Modeling of Multi-Parton Interactions (MPI) in PYTHIA essential to simulate underlying event (UE) in hadron collisions

- Key component: Regularization parameter p_{T,0}

Collision energy extrapolation of $p_{T,0}$ follows power law function

- Reference energy usually 7 TeV; accurate extrapolation down to 200 GeV is not easy (see also*)

Tuning Strategy

Parametrization-based tuning methodology: *Professor* toolkit

(professor.hepforge.org)

- Polynomial parameterization of generated Monte Carlo (MC) data w/ parameter variation

- χ^2 min. w.r.t. data

MC response in one data bin b

$$\chi^2(\boldsymbol{p}) = \sum_{\mathcal{O}} w_{\mathcal{O}} \sum_{b \in \mathcal{O}} \frac{(f^{(b)}(\boldsymbol{p}) - \mathcal{R}_b)^2}{\Delta_b^2}$$

Image credit: Holger Schulz's Thesis professor.hepforge.org/diplomathesis h schulz.pdf

Professor+PYTHIA6 Tune: https://doi.org/10.1140/epjc/s10052-009-1196-7

CMS PYTHIA6,8 Herwig++ Tune: https://doi.org/10.1140/epjc/s10052-016-3988-x

CMS Herwig 7 Tune: <u>arXiv:2011.03422</u>

Tuning Parameters and Observables

Starting point is PYTHIA 8.303 with prepackaged Monash* tune

NNPDF $2.3 \rightarrow NNPDF 3.1$

- Leading order, $\alpha_s(m_Z) = 0.130$

Reference energy switched to 200 GeV

TABLE I. PYTHIA 8 settings and tuning parameters.							
Setting	Default	New					
PDF:pSet	13	17					
MultipartonInteractions:ecmRef	$7 \mathrm{TeV}$	$200~{ m GeV}$					
MultipartonInteractions:bprofile	3	2					
Tuning Parameter	Default	Range					
MultipartonInteractions:pT0Ref	$2.28~{ m GeV}$	0.5- $2.5 GeV$					
MultipartonInteractions:ecmPow	0.215	0.0 - 0.25					
MultipartonInteractions:coreRadius	0.4	0.1 - 1.0					
MultipartonInteractions:coreFraction	0.5	0.0 - 1.0					
ColourReconnection:range	1.8	1.0-9.0					

New From STAR

Included in RIVET

TABLE II. Mid-rapidity data used in the tuning procedure.							
Experiment	$\sqrt{s} \; (\mathrm{GeV})$	Observable	Reference				
STAR	200	π^{\pm} cross sections vs. p_T	Physics Letters	s B 637, 161 (2006)			
PHENIX	200	Di-muon pairs from Drell-Yan vs. di-muon p_T	Phys. Rev. D 9	99, 072003 (2019)			
STAR	200	Average charged particle multiplicities and p_T vs. leading jet p_T	Phys. Rev. D	101, 052004 (2020)			
		in the forward, transverse, and away regions					
CDF	300, 900, 1960	Charge particle density and $\sum p_T$ vs. leading hadron p_T in	Phys. Rev. D 92, 092009 (2015)				
		transverse region					
STAR	200		Physics Letters	s B 811, 135846 (2020			
STAR	200	Inclusive and groomed jet mass	Phys. Rev. D 104, 052007 (202				
			-				

Degrees of Freedom = 493

*P. Skands et al. Eur. Phys. J. C74, 3024 (2014)

Tune Results: The 'Detroit' Tune

0.765

0.760

1.408

ਹ 1.406

1.402

1.400 -

5.4 5.5 5.6

CR:range

5.2 5.3 5.4 5.5 5.6

CR: Range

5.3

TABLE III. PYTHIA 8 tuned parameters.

Tuning Parameter	Default	New
MultipartonInteractions:pT0Ref	$2.28~{ m GeV}$	$1.40~{ m GeV}$
MultipartonInteractions:ecmPow	0.215	0.135
MultipartonInteractions:coreRadius	0.4	0.56
Multipart on Interactions: core Fraction	0.5	0.78
ColourReconnection:range	1.8	5.4

..408

..406

New PYTHIA 8 Performance

Representative plots (see backup)

Significant improvement of pion spectrum and underlying event description @ 200 GeV

Additional improvements in jet sub-structure and Drell-Yan (backup)

Yellow bands show data uncertainties only

Energy Dependence: 300-1960 GeV

CDF Phys. Rev. D 92, 092009 (2015)

Representative plots at each energy; similar comparisons for p_T sum and transMIN Good agreement with data valid across all center-of-mass energies up to 1.96 TeV

Energy Dependence: $\sqrt{s} = 510$ GeV

Comparisons with preliminary STAR inclusive jet spectra at 510 GeV improved in shape and scale - largely driven by new proton PDFs

Comparisons at LHC Energies: 7 TeV

CMS Journal of High Energy Physics 2011, 109 (2011)

CMS CP tunes follow similar strategy as this exercise (European Physical Journal C 80, 4 (2020))

Extrapolation curve for Detroit tune less steep than Monash and CMS CP1 tunes

High leading track-jet p_T: Comparable to CMS underlying event data at 7 TeV, and Monash tune; deviations at low p_T

Comparisons at LHC Energies: 13 TeV

CMS 13 TeV: CDS CMS-PAS-FSQ-15-007

Representative plots (see backup)

Comparable or better than Monash tune at high p_T ; deviations with data at low p_T

- Likely driven by different proton shape function used

High p_T region significantly impacted by long-lived decays in MC

- Explicitly turned off here; could resolve CMS CP1 discrepancy

Forward Rapidity Comparisons

Both Monash and Detroit tunes can't describe forward pion spectra from BRAHMS or STAR

- New tune does worse than Monash...
- Simultaneous tune with mid-rapidity and larger tune-able phase space (ISR) unable to recover MC/data agreement

Desirable to resolve for RHIC programs starting in 2022 (forward STAR upgrade), and future Electron-Ion Collider program

Summary

PYTHIA 8 tuned to underlying event data at $\sqrt{s} = 200\text{-}1960$ GeV: The 'Detroit' Tune

- Significant improvement in the description of data at all energies used in tuning
- Underlying event observables vs. leading particle/jet at high p_T described at $\sqrt{s} = 7$ and 13 TeV; Comparable or better than Monash tune
- Manuscript in preparation... stay <u>tuned!</u>

Simultaneous description of both mid- and forward-rapidity data currently not achievable→ Highly desired for upcoming (2022+) STAR forward upgrade data!

Backup Slides Follow

Underling Event @ 200 GeV

Underling Event @ 13 TeV

Underling Event: CDF

16

Underling Event: CDF cont.

Drell-Yan

More Jet Observables

MC Errors: Eigentunes

TABLE IV. PYTHIA 8 tune parameter variations for each eigentune.

Tuning Parameter	1+	1-	2+	2-	3+	3-	4+	4-	5+	5-
MultipartonInteractions:pT0Ref (GeV)	1.37	1.43	1.38	1.42	1.44	1.37	1.41	1.40	1.40	1.41
MultipartonInteractions:ecmPow	0.132	0.138	0.135	0.135	0.119	0.150	0.145	0.126	0.148	0.125
MultipartonInteractions:coreRadius	0.74	0.41	0.77	0.41	0.57	0.56	0.57	0.56	0.51	0.60
MultipartonInteractions:coreFraction					0.78					
ColourReconnection:range	7.50	3.61	5.38	5.41	5.40	5.40	5.40	5.40	5.41	5.40

