Intrinsic k_T studies

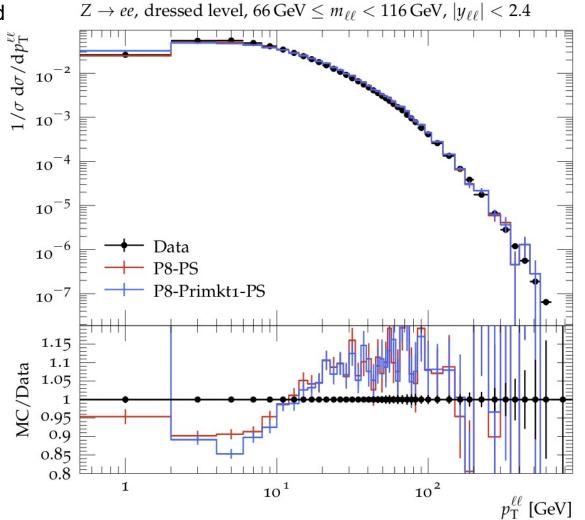
12th MPI at LHC

Hannes Jung, <u>Mikel Mendizabal</u> Lisbon, 15 October 2021

Plan for today

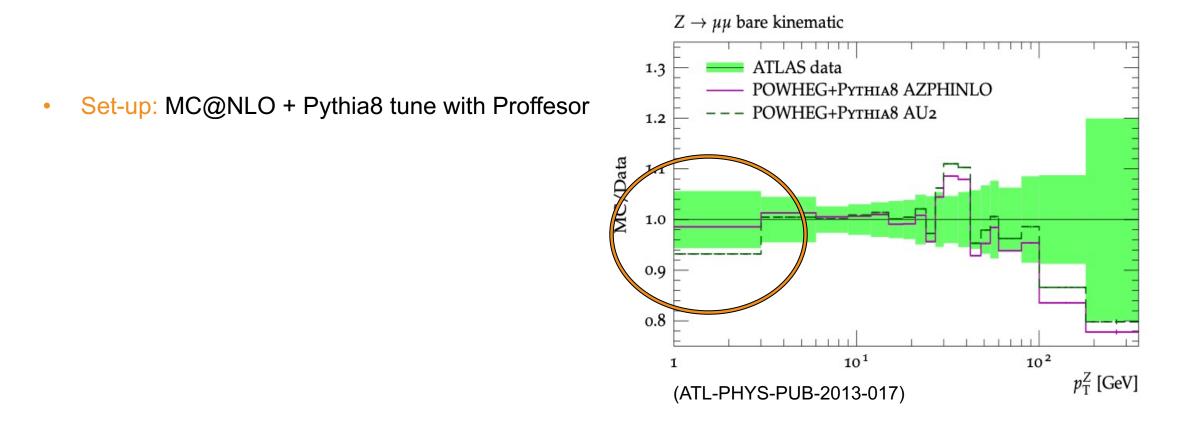
- Introduction
- A first attempt to tune intrinsic k_T
- Energy dependent intrinsic k_T
- Conclusions

• Besides longitudinal momenta, partons also have small transverse momentum inside the incoming hadrons


• The intrinsic k_T represents this small transverse momentum, intrinsic $k_T \sim MeVs$

• It is introduced in the evolution equations as a non-perturvative parameter, it is generated from a gaussian distribution of width σ

$$e^{-k_T^2/\sigma^2}$$


When is the intrinsic k_T important?

- The contribution of intrinsic k_T is small at LHC energies and at Z peak, only visible at low p_T
- Drell-Yan processes are the cleanest events to study the intrinsic k_T , due to the lack of final state radiation
- The Z transverse momentum is the perfect observable to study the interplay of the initial state radiations and the intrinsic $k_{\rm T}$
- Thus, a proper description of the low p_T regions is very important for precision measurements that make use of small p_T regions

Intrinsic k_T

• Goal: Tune the intrinsic k_T parameters to describe the low Z p_T spectrum at any given DY mass

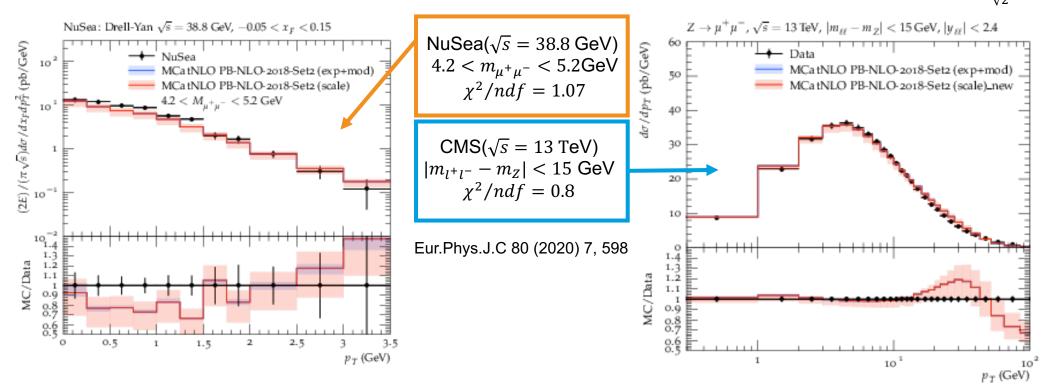
Pythia8 parameters for Intrinsic k_T

- BeamRemnants:primordialKThard $\rightarrow \sigma_{hard}$
 - Width of the gaussian distribution where the intrinsic k_T is generated from

 $e^{-k_T^2/\sigma^2}$: $\sigma \propto \sigma_{hard}$

- SpaceShower:pT0Ref
 - Regularization of the divergence of the QCD emission probability for $p_T \rightarrow 0$ $\frac{p_T^2}{(p_{T_0}^2 + p_T^2)}$

•
$$p_{T_0} = p_{T0Ref} \left(\frac{ecmNow}{ecmRef}\right)^{ecmPow}$$
 and by default $ecmPow = 0 \rightarrow p_{T_0} = p_{T0Ref}$

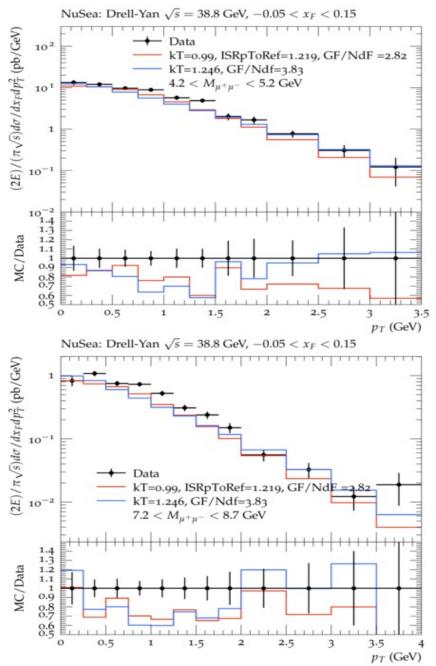

A first attempt to tune the intrinsic k_T

Tuning of intrinsic k_T at low CM energies

 The first idea → Tune intrinsic k_T paramters at low DY mass processes for higher precision and use this tune at any given CM energy / DY mass

Little room for QCD evolution

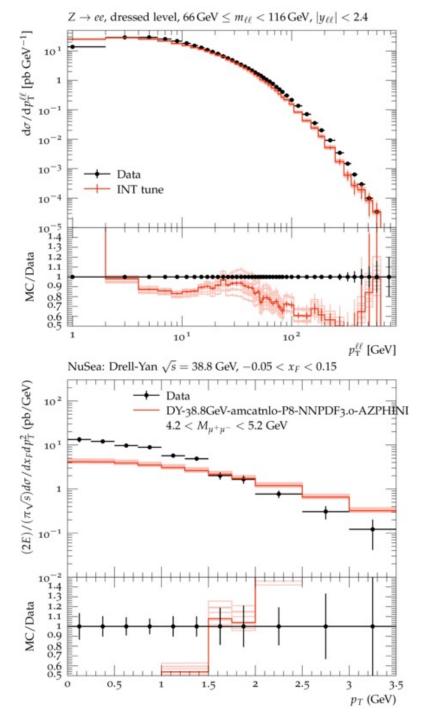
• Same idea as Cascade3* parton shower based on Parton Branching formalism, same width $\sigma = \frac{q_s}{\sqrt{2}}$: $q_s = 0.5 \text{ GeV}$



Results of the tune at $\sqrt{s} = 38.8 \text{ GeV}$

- On a first step we turn-off the parton shower and only include the intrinsic $k_{\rm T}$
- On a second step the parton showers are turned on and both pT0Ref and the intrinsic $k_{\rm T}$ are tuned

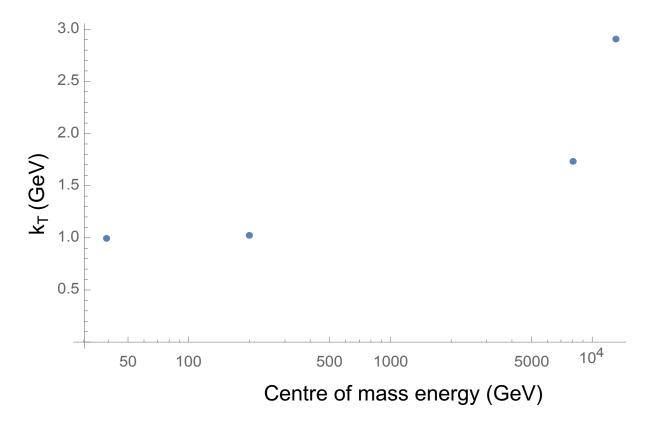
Tune	BeamRemnants: primordialKTHard	SpaceShower: pT0Ref	SpaceShower: alphaSvalue	
Step 1	1.246	-	-	
Step 2	0.99	1.219	0.118(fixed)	


• Good description of MC for both cases, with a $\chi^2/ndf = 2.82$ for second step

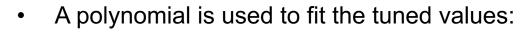
Energy dependent intrinsic k_T

- For different DY masses different intrinsic k_T s
 - For AZPHINLO tune at 8 TeV k_T = 1.74 GeV
 - For our tune (INT) at 38.8 GeV k_T = 0.9 GeV
- Apply the two tunes to different centre of mass energies:
 - INT tune at 8 TeV (upper panel) → First bin "diverges"
 - AZPHINLO tune at 38.8 GeV (lower panel)→ First bin converges to zero
- An energy dependence can be observed for the $k_{\rm T}$ in Pythia8

Energy dependent intrinsic k_T

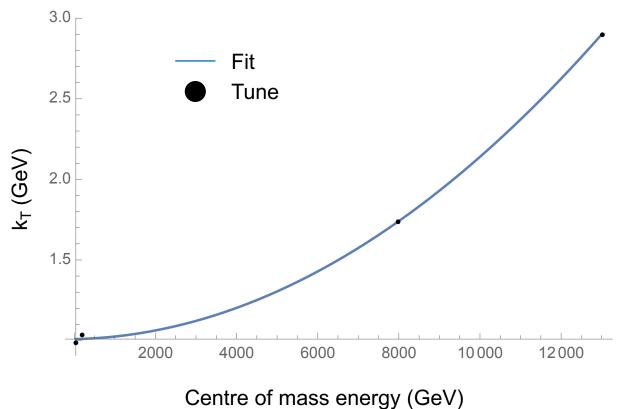

Energy dependent intrinsic k_T

• For each different centre of mass energy we tune the intrinsic k_T


Experiment	Centre of mass energy (GeV)	Intrinsic k _⊤ from tune (GeV)
NuSea	38.8	0.99
PHENIX	200	1.05
ATLAS	8 000	1.74
CMS	13 000	2.90

- For larger CME the $k_{\rm T}$ reaches unphysical values

 $k_T > 1 \mbox{ GeV} \sim size \ of \ proton$

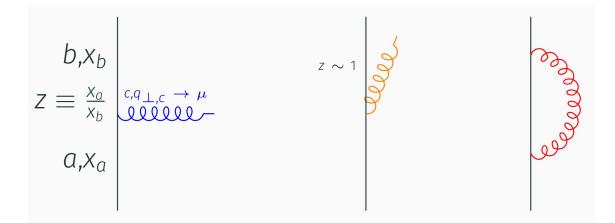


Fit of intrinsic k_T

 $k_T(\sqrt{s}) = 1.019 + 3.182 \cdot 10^{-6}\sqrt{s} + 1.086 \cdot 10^{-8}\sqrt{s}^2$

Experiment	Centre of mass energy (GeV)	Intrinsic k _⊤ from tune (GeV)	Intrinsic k _⊤ from fit (GeV)
NuSea	38.8	0.99	1.019
PHENIX	200	1.05	1.020
ATLAS	8 000	1.74	1.740
CMS	13 000	2.90	2.899

• The fit describes properly the values from the tune:


• At rest $k_T(0) = 1.019 \text{ GeV}$, one would expect a value of few MeVs

Summary

Why is there a large sensitivity to intrinsic k_T ?

https://indico.ph.ed.ac.uk/event/63/contributions/1002/attachments/751/929/Mikel_Mendizabal.pdf

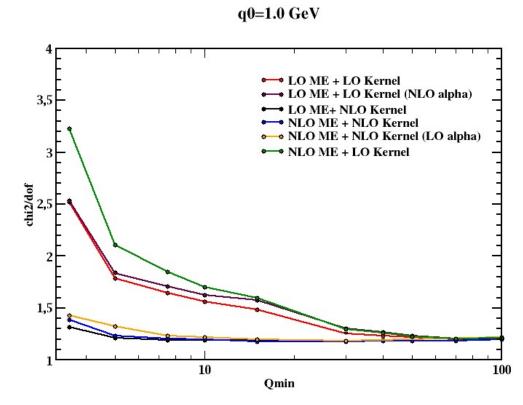
- Extended discussion around the instrinsic k_T in REF 2020 workshop :
 - Studies in Herwig by S. Gieseke, M. H. Seymour, A. Siódmok (arXiv:0712.1199) back in 2008
 - Pythia and Herwig have a non predictable value of the intrinsic kT
 - Cascade 3 shows a good description both at high and low DY masses (<u>arXiv:2001.06488</u>) (TMD parton shower)
- Can the treatment of non-perturvative effects be the reason?

When $z \sim 1$ the splitting is non resolvable $\rightarrow z_m$ Pythia/Herwig z_m < Cascade z_m

This smaller value of z_m makes the contributions of non-perturvative effects larger, e.g.: intrinsic kT

- A good description of the intrinsic k_T is important for precision measurement in the low p_T regions
- From the preliminary tune of the intrinsic k_T at $\sqrt{s} = 38.8$ GeV we observe an energy dependency of the intrinsic k_T in Pythia8
- We performed a tune for different centre of mass DY processes using NuSea, PHENIX, ATLAS and CMS meausrements
- A fit was performed for the intrinsic k_T :

$$k_T(\sqrt{s}) = 1.019 + 3.182 \cdot 10^{-6}\sqrt{s} + 1.086 \cdot 10^{-8}\sqrt{s}^2$$


• A good agreement is observed between the fit and the tune values (χ^2 test to be performed)

Thank you

Could NLO shower solve this?

Some thoughts

- Pythia8 uses LO splitting functions while Cascade3 uses NLO splitting functions
- Studies from S. Taheri Monfared on the effect of NLO splitting kernels and ME in TMD fitting to DIS data using PB formalism:
 - q_0 non-perturvative parameter $z_M = 1 q_0/\mu$
 - By defould PB formalism uses a $q_0 \sim 1 \text{ MeV}$

Contact

DESY. DeutschesMikel MendizabalElektronen-SynchrotronCMSmikel.mendizabal.morentin@desy.dewww.desy.dePhone