

Minimum-bias and underlying-event studies in pp collisions at LHCb

Julian Boelhauve on behalf of the LHCb collaboration **11 October 2021**

12th International Workshop on Multiple Partonic Interactions at the LHC (hybrid)

LHCb detector

SPD/PS M3 M4 M5 T3 RICH2 ECAL M1 у Single-arm forward 5m spectrometer covering Magnet pseudorapidity range $\eta \in [2, 5]$ RICH1 Int. J. Mod. Phys. A 30, 1530022 (2015) Vertex/ Locato Very good vertex resolution Momentum resolution varying from 0.5% at low momentum to 1.0% at $200\,{
m GeV}/c$ – 5m Excellent particle-identification 5m 10m 15m 20m 7 capabilities J. Instrum. 3, S08005 (2008)

Overview of today's talk

- Charged-hadron production in Z-tagged jets in proton-proton (pp) collisions at a centre-of-mass energy of $\sqrt{s} = 8 \text{ TeV}$ Phys. Rev. Lett. 123, 232001 (2019)
- Differential $b\bar{b}$ and $c\bar{c}$ -dijet cross-sections in pp collisions at $\sqrt{s} = 13 \text{ TeV}$ J. High Energy Phys. 02, 023 (2021)
- Prompt charged-particle production in pp collisions at $\sqrt{s} = 13 \text{ TeV}$ arXiv:2107.10090
- Plans for minimum-bias and underlying-event measurements at LHCb in Run 3

Z-tagged jets: Analysis strategy

- Limited understanding of non-perturbative hadronisation
- Use jets with high transverse momentum $(p_{\rm T})$ to measure hadron production in a system correlated to the scattered parton
- Select jets recoiling against a $Z(\rightarrow \mu^+\mu^-)$ boson to achieve sensitivity to light-quark jets
- Measure fragmentation distributions of charged hadrons with respect to jet axis
 - Longitudinal momentum fraction (z)
 - Momentum transfer transverse to jet axis $(j_{\rm T})$
 - Radial distribution (r)
- Correct fragmentation distributions for track- and jet-reconstruction inefficiencies
- Apply two-dimensional unfolding to take into account bin migration in the fragmentation observables and $p_{\rm T,jet}$

Z-tagged jets: Fragmentation distributions

- Kinematic effect at low z due to requirement on track momentum
- Charged-hadron multiplicity within the jet increases with $p_{\rm T,\,jet}$

Z-tagged jets: Comparisons

- Fragmentation functions in forward region flatter at high *z* than in inclusive jet measurements at central rapidity sensitive to gluon jets
- Jets also found to be more collimated in *r* compared to gluon-dominated measurements
- PYTHIA 8 underestimates mean charged-hadron multiplicity within the jet

$b\overline{b}$ - and $c\overline{c}$ -dijet cross-sections: Analysis strategy

- Differential dijet cross-sections as tests of next-to-leading-order perturbative-quantum-chromodynamics calculations
- Measure inclusive $b\bar{b}$ and $c\bar{c}$ -dijet cross-sections in bins of kinematic observables
 - \blacksquare Leading-jet η
 - \blacksquare Leading-jet $p_{\rm T}$
 - Dijet mass
 - Rapidity difference between the jets
- Identify jet flavours with variables related to secondary vertices constructed iteratively
- Use these variables as input to two boosted-decision-tree classifiers to distinguish between heavy and light jets as well as between b and c jets

$b\overline{b}$ - and $c\overline{c}$ -dijet cross-sections: Fit

- Combine the classifier responses for both jets linearly into two observables $(t_0 \text{ and } t_1)$ to be fitted
- Construct fit templates for same- and different-flavour processes as well as for light-flavour background

J. High Energy Phys. 02, 023 (2021)

$b\overline{b}$ - and $c\overline{c}$ -dijet cross-sections: Results

 Determine differential cross-sections with the fitted yields, unfolding technique and corrected efficiencies

- Data mostly below next-to-leading-order predictions from MADGRAPH 5 and PYTHIA 8 as well as below leading-order predictions from PYTHIA 8
- Compatibility within 1–2 standard deviations

$b\overline{b}$ - and $c\overline{c}$ -dijet cross-sections: Ratio

Data compatible with both predictions within uncertainties

Prompt charged-particle production: Analysis strategy

- Hadron-production measurements as input to phenomenological interaction models implemented in event generators
 - Simulate the underlying event for hard processes
 - Simulate atmospheric interactions inducing air showers
- Long-standing discrepancy in number of muons produced in high-energy air showers between observations and simulation (Muon Puzzle) EPJ Web Conf. 210, 02004 (2019)
- Measure cross-section of prompt production of long-lived charged particles in bins of $p_{\rm T},\eta$ and particle charge
- Adjust efficiency as well as simulated background contributions using ratios (*R_i*) of proxy variables in data and simulation
- Discriminate between various hadronic-interaction models

Prompt charged-particle production: Efficiency

- Correct simulated efficiency for charged particles for offset between data and simulation J. Instrum. 10, P02007 (2015)
- Efficiency dependent on composition of particles due to different lifetimes and hadronic-interaction cross-sections
- Adjust simulated particle composition by extrapolating LHCb measurements of ratios of prompt hadron production from $\sqrt{s} = 0.9 \text{ TeV}$ and 7 TeV Eur. Phys. J. C 72, 2168 (2012) to 13 TeV

Prompt charged-particle production: Origins of selected tracks

■ White areas above blue histograms representing fake tracks

Non-negligible background contributions from fake tracks, photon conversions, charged-pion material interactions and strange decays

Prompt charged-particle production: Proxy for fake tracks

 Contribution from fake tracks to selected tracks approximately proportional to number of tracks with high values of fake-track probability (P_{fake})

In each kinematic bin

- Divide P_{fake} distribution into ten bins
- Choose first bin above $P_{\rm fake}=0.3$ with fake-track purity above 80~% to determine $R_{\rm fake}$

arXiv:2107.10090

Prompt charged-particle production: Proxy for material interactions

- Number of tracks produced in interactions of charged pions with the detector material
 - Form combinations of three tracks and define point of closest approach as candidate vertex of interaction
 - Require minimum distance of vertex from the beam axis to discard region without material
 - Apply further topological and kinematic requirements optimised using simulation
- Scale also simulated number of tracks from conversions of photons (mostly originating from neutral-pion decays) with $R_{\rm mat}$

Prompt charged-particle production: Proxy for strange decays

- Fit $K^0_S(\to \pi^+\pi^-)$, $\Lambda(\to p\pi^-)$ and $\overline{\Lambda}(\to \overline{p}\pi^+)$ mass distributions in kinematic bins
- Perform combined fit to ratios of signal yields in data and simulation with monotone cubic spline
- Use the fitted model to determine R_{strange} in kinematic bins of the decay products

Prompt charged-particle production: Correlation matrix of differential cross-section

\blacksquare Large, medium and small cells respectively corresponding to particle charges, η bins and $p_{\rm T}$ bins

Correlations positive due to dominating and often fully correlated systematic uncertainties

Prompt charged-particle production: Differential cross-section

- Deviations between -26% and +170%
- Smallest overall deviation observed for EPOS-LHC

Prompt charged-particle production: Ratio of differential cross-sections

Best description provided by PYTHIA 8

- Hadron distributions in heavy-quark jets and jets produced in association with W or Z bosons
- Differential heavy-quarkonium production cross-sections
- Strangeness production
- Multiplicity-dependent cross-section ratios of prompt hadron production
- Prompt hadron production in proton-oxygen collisions as input to the Muon Puzzle

Summary and outlook

- Charged-hadron production in Z-tagged jets in pp collisions at $\sqrt{s} = 8 \text{ TeV}$
 - Light-quark jets more longitudinally and transversely collimated compared to gluon-dominated measurements
 - PYTHIA 8 underestimates mean charged-hadron multiplicity within the jet
- Differential $b\bar{b}$ and $c\bar{c}$ -dijet cross-sections in pp collisions at $\sqrt{s} = 13 \text{ TeV}$
 - Cross-sections mostly below but compatible with predictions from MaDGRAPH 5 and PYTHIA 8 within 1–2 standard deviations
 - Cross-section ratio compatible with predictions within uncertainties
- Prompt charged-particle production in pp collisions at $\sqrt{s} = 13 \,\mathrm{TeV}$
 - Cross-section mostly overestimated by recent hadronic-interaction models
 - Charge ratio best reproduced by PYTHIA 8
 - Analysis update on identified hadrons ongoing
- Extensive plans for minimum-bias and underlying-event measurements at LHCb in Run 3