2th MPI at LHC

MINIMUM BIGS and Underlying Event studies

C. Oppedisano for the ALICE Collaboration

colliding systems

Underlying event

(hard scattering) in 3 different regions:

R_T estimator

$$R_T = \frac{N^{TR}}{\langle N^{TR} \rangle}$$

study particle production as a function of UE activity

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

Relative Transverse activity classifier R_T : multiplicity in the TRANSVERSE REGION (p_T >5 GeV/c) normalised to MB

R_T estimator

$$R_T = \frac{N^{TR}}{\langle N^{TR} \rangle}$$

study particle production as a function of UE activity

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

Relative Transverse activity classifier R_T : multiplicity in the TRANSVERSE REGION (p_T >5 GeV/c) normalised to MB

Iow-UE (R_T~0) ♦ Iow N_{MPI}, jet-dominated high-UE (high R_T) high N_{MPI}

R_T estimator

$$R_T = \frac{N^{TR}}{\langle N^{TR} \rangle}$$

study particle production as a function of UE activity

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

Relative Transverse activity classifier R_T : multiplicity in the TRANSVERSE REGION (p_T >5 GeV/c) normalised to MB

Iow-UE (R_T~0) ♦ Iow N_{MPI}, jet-dominated high-UE (high R_T) high N_{MPI}

T. Martin et al., Eur. Phys. J. C76 5, (2016) 299

MPI & multiplicity in MB and in UE

T. Martin et al., Eur. Phys. J. C76 5, (2016) 299

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal C. Oppedisano, ALICE Collaboration

UE has larger than average N_{MPI} than MB event

MPI & multiplicity in MB and in UE

T. Martin et al., Eur. Phys. J. C76 5, (2016) 299

C. Oppedisano, ALICE Collaboration 12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

UE has larger than average N_{MPI} than MB event

UE multiplicity increases faster than MB multiplicity

ALICE Coll., JHEP 04 (2020) 192

TOWARD SIDE

- jet fragmentation region
- soft "jet pedestal" from UE whose relevance varies with R_T
- UE has no influence on the hard part of the jet

Spectra in R_T intervals:

- high UE # "background" from UE to jet
- low UE | jet almost free from background

Spectra vs. R_T in pp collisions

TRANSVERSE SIDE

- UE region
- $< p_T >$ increases with UE

(and with MB)

Spectra in R_T intervals: high UE harder spectra low UE I softer spectra

12th International workshop on MPI at the LHC ALI-PREL-342263

UE plateau observed also in p-Pb collisions Iarger UE magnitude in p-Pb collisions models able to describe the UE in pp collisions are not reproducing p-Pb results.

C. Oppedisano, ALICE Collaboration

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

Spectra vs. Rt in pp collisions

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

TRANSVERSE REGION ♦ hardening of p_T spectra with increasing R_T

Spectra vs. Rt in pp collisions

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

TRANSVERSE REGION hardening of p_T spectra with increasing R_T

high-UE > PYTHIA gives reasonable description of data (MPI and CR modelling)

Iow-UE
activity PYTHIA and EPOS predictions are softer than data

Spectra vs. Rt in p-Pb collisions

C. Oppedisano, ALICE Collaboration

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

TRANSVERSE REGION

hardening of p_T spectra with increasing R_T

softer rise relative to pp

TOWARD AWAY SIDES • UE contribution more important than in pp collisions

Spectra vs. Rt in Pb-Pb collisions

C. Oppedisano, ALICE Collaboration

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

TRANSVERSE REGION

- similar behaviours in the
- 3 regions
- R_T is dominated by soft production

ALI-PREL-346036

C. Oppedisano, ALICE Collaboration

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

it is ~ constant in Pb-Pb collisions

ALI-PREL-346036

$R_T \rightarrow 0$ jet contribution dominates similar $< p_T >$ values across different colliding systems

C. Oppedisano, ALICE Collaboration

it is ~ constant in Pb-Pb collisions

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

high $R_T \downarrow UE$ dominates \downarrow similar $< p_T >$ values in the 3 topological regions for each colliding system

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

Very forward energy vs. mid rapidity activity

ZDC energy vs. MPI in pp collisions

A zero-degree calorimeter for neutrons (ZN) and one for protons (ZP) beam remnants

PYTHIA models predict inverse dependence of very forward energy as a function of the number of N_{MPI}

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

ALICE Coll., arXiv 2107.10757

ZDC energy vs. midrapidity multiplicity

characterise midrapidity particle production vs. ZDC energy

Models are able to describe the overall trend, PYTHIA 6 Perugia 2011 is the one showing a better agreement However, models reproduce the trend for average values but do not describe ZN and ZP spectra in multiplicity bins

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

ALICE Coll., arXiv 2107.10757

ZDC energy vs. midrapidity leading pt

ZDC energy as a function of p_{T}^{leading} (track with largest transverse momentum) in $|\eta| < 0.8$

C. Oppedisano, ALICE Collaboration

12th International workshop on MPI at the LHC, 11-15 October 2021, Lisbon, Portugal

For leading $p_T > 5$ GeV/c very forward neutron and proton energies, normalised to MB value, do not decrease anymore (saturation)

ZDC energy and UE

UE measurements the transverse multiplicity (separation in azimuthal angle) efficiently trigger on central pp collisions selecting events with a large number of MPIs

ZDC energy (separation in rapidity) shows a complementary behaviour to that observed for transverse charged particle multiplicity

• both observables saturate for leading $p_T > 5$ GeV/c

saturation in transverse region at midrapidity and in very forward energy is built in the initial stages of the collision

Small energy at very forward rapidities and large UE activity select:

- ▶ larger than average N_{MPI}
- higher than average multiplicity
- ♦ high-p⊤ particle at midrapidity

Outlook & perspectives

Many observables and different approaches to access MPI in ALICE in the different colliding systems constraints for models

Several ongoing analyses studying the UE (R_T) dependence: π, K, p production, strange particle and anti-deuteron production b many results in a very near future!

Outlook & perspectives

Many observables and different approaches to access MPI in ALICE in the different colliding systems constraints for models

Several ongoing analyses studying the UE (R_T) dependence:

ALICE is ready for Run 3, with new and upgraded detectors: TPC based on GEM technology continuous readout at 50 kHz 50x faster readout rate, access to rarer probes, improved tracking resolution down to very low p_{T}

more results and more differential studies available soon

C. Oppedisano, ALICE Collaboration

- π , K, p production, strange particle and anti-deuteron production \blacklozenge many results in a very near future!
- ITS: monolithic active silicon pixel sensors smaller material budget, closer to IP, improved resolution

Outlook & perspectives

COR STATE

Many observables and different approaches to access MPI in ALICE in the different colliding systems constraints for models

Several ongoing analyses studying the UE (R_T) dependence:

ALICE is ready for Run 3, with new and upgraded detectors: TPC based on GEM technology continuous readout at 50 kHz 50x faster readout rate, access to rarer probes, improved tracking resolution down to very low p_{T}

more results and more differential studies available soon

A new detector proposal (ALICE3) for LHC Run 5 is under preparation compact Si tracker with unprecendented tracking and vertexing capabilities at high rates

C. Oppedisano, ALICE Collaboration

- π , K, p production, strange particle and anti-deuteron production \clubsuit many results in a very near future!
- ITS: monolithic active silicon pixel sensors smaller material budget, closer to IP, improved resolution

Zero Degree calorimeters

C. Oppedisano, ALICE Collaboration

