# ntunities at the LHC

### Opportunities of OO and pO collisions at the LHC

Jasmine Brewer Aleksas Mazeliauskas Wilke van der Schee

Based on: Brewer, Huss, Mazeliauskas, van der Schee [2108.13434]

#### Pushing our knowledge of heavy-ion physics in smaller systems



#### Heavy-ion collisions





## Smaller systems (e.g. p-Pb) high energy scatterings energy loss? far from equilibrium initial state hadron gas hydrodynamics?

hydrodynamics?  $\sim \text{few fm/c}$ 

time

#### Flow-like correlations in small systems

#### No observed energy loss



Schenke, Shen, Tribedy [2005.14682], Chun Shen QM'19

#### Opportunities of OO and pO collisions at the LHC

Feb. 4-10, 2021

- Technical feasibility of oxygen at the LHC Unique opportunities for
- Soft sector
  - Unique geometry, temperature
- High- $p_T$  probes
  - energy loss in small systems
  - constraining nuclear PDFs
- pO for cosmic ray physics

396 registered participants, 186 unique connections per day.

Workshop summary document: arXiv:2103.01939 Slides and recordings: cern.ch/OppOatLHC





Aleksas Mazeliauskas

Wilke van der Schee



cern.ch/OppOat

#### Opportunities of OO and pO collisions at the LHC

Feb. 4-10, 2021

- Technical feasibility of oxygen at the LHC Unique opportunities for
- Soft sector
  - Unique geometry, temperature
- High- $p_T$  probes
  - energy loss in small systems
  - constraining nuclear PDFs
- pO for cosmic ray physics

396 registered participants, 186 unique connections per day.

Workshop summary document: arXiv:2103.01939 Slides and recordings: cern.ch/OppOatLHC





Aleksas Mazeliauskas

Wilke van der Schee



cern.ch/OppOat

#### Unique opportunities of oxygen in the soft sector

#### Better-constrained geometry than pPb

pPb: subnucleonic structure crucial for flow



(Bjoern Schenke)



OO: similar multiplicity but heavy-ion-like geometry



#### Extensive projections by ALICE for short OO/pO run

[ALICE-PUBLIC-2021-004]

#### Unique opportunities of oxygen in the soft sector

#### Better-constrained geometry than pPb

pPb: subnucleonic structure crucial for flow



(Bjoern Schenke)



OO: similar multiplicity but heavy-ion-like geometry





#### More compact, hotter than PbPb at the same multiplicity

• unique constraints on soft sector observables

Extensive projections by ALICE for short OO/pO run [ALICE-PUBLIC-2021-004]

#### Unique opportunities of oxygen in the hard sector

#### Measuring energy loss in small systems

Huss, Kurkela, Mazeliauskas, Paatelainen, v.d. Schee, Wiedemann [2007.13754], [2007.13758]



#### Constraining A-dependence of nuclear PDFs

• Particularly gluons (hadronic data)





Paakkinen OppO'21 8

#### Hard probes studies generally rely on a reference



Ratio to pp reference enables..

Cancellation of pQCD (scale, PDF) uncertainties

Huss et. al. [2007.13754], [2007.13758]

#### Hard probes studies generally rely on a reference



Ratio to pp reference enables..

Cancellation of pQCD (scale, PDF) uncertainties

Cancellation of experimental systematic uncertainties

#### Hard probes studies generally rely on a reference



Ratio to pp reference enables..

Cancellation of pQCD (scale, PDF) uncertainties

Cancellation of experimental systematic uncertainties

Important both for energy loss (OO) and nPDF constraints (pO)

Paakkinen OppO'21

Precision especially crucial for measuring small effects

#### Oxygen running in LHC Run 3



|          | -        |          |          |         |                      |
|----------|----------|----------|----------|---------|----------------------|
| р-р      | p-Pb     | Pb-Pb    | 0-0      | p-O     |                      |
| 13.6 TeV | 8 TeV    | 5.02 TeV | 6.37 TeV | 9 TeV   | [ (Depending on      |
| 14 TeV   | 8.79 TeV | 5.52 TeV | 7 TeV    | 9.9 TeV | f machine condition) |
|          |          |          |          |         | -                    |

#### Planned pp measurements

Alemany Fernandez OppO'21 Bruce OppO'21

- Additional commissioning time to change beam energy.
- Additional time for pp reference measurement.

#### pp references at OO, pO energies likely not possible in a short run

Jasmine Brewer (CERN)

#### Possibilities for a reference

#### Constructing a reference

- Perturbative QCD
- Interpolation between measurements at nearby energies

Construct 6.37/5.02 TeV spectra ratio to scale 5.02 TeV measurement

#### Bypassing the need for a reference at the same energy: mixed-energy ratio

• Ratios of OO to pp at different center-of-mass energies

Brewer, Huss, Mazeliauskas, van der Schee [2108.13434]

#### Hadron and jet spectra in perturbative QCD

 $\begin{array}{rll} \text{Cross section} = & \begin{array}{c} \text{Parton} \\ \text{distribution} \otimes \\ \text{functions} \end{array} & \begin{array}{c} \text{Partonic} \\ \text{cross section} \end{array} & \left( \begin{array}{c} \text{fragmentation} \\ \text{functions} \end{array} \right) \end{array}$ 

$$\sigma^{\text{had}}(\mu_F, \mu_R) = \text{PDF}(\mu_F) \otimes \hat{\sigma}(\mu_F, \mu_R) \otimes \text{FF}(\mu_F)$$
  
$$\sigma^{\text{jet}}(\mu_F, \mu_R) = \text{PDF}(\mu_F) \otimes \hat{\sigma}(\mu_F, \mu_R)$$

 $\mu_F, \mu_R$ 

Unphysical scales. Variation used to estimate missing higher order terms in perturbative expansion

#### pQCD predictions for 6.37/5.02 TeV



#### Interpolating between measurements at nearby energies



Fit spectra at high 
$$p_T$$
:  

$$\frac{d\sigma}{dp_T} = A\sqrt{\tilde{s}}^{\beta} \tilde{x}_T^{n(\tilde{x}_T,\sqrt{\tilde{s}})} \qquad x_T = 2p_T/\sqrt{s}$$

$$n \supset \{1, x_T, \log x_T, f(\sqrt{s}), f(\sqrt{s})x_T, f(\sqrt{s})\log x_T\}$$

#### Consider interpolation uncertainties from

- Functional form and data included in the fit
- Measurement uncertainties at anchor energies

Brewer, Huss, Mazeliauskas, van der Schee [2108.13434]

#### Sensitivity of interpolation to fit forms and assumptions



<5% uncertainty from functional form, but more substantial sensitivity to  $p_T^{\min}$ 

#### Impact of uncertainties on the anchor energies for interpolation

![](_page_17_Figure_1.jpeg)

Sample distribution of fits consistent with data within uncertainties (Markov Chain Monte Carlo)

#### Impact of uncertainties on the anchor energies for interpolation

![](_page_18_Figure_1.jpeg)

Sample distribution of fits consistent with data within uncertainties (Markov Chain Monte Carlo)

Gives confidence bands on the interpolation

#### Impact of uncertainties on the anchor energies for interpolation

#### Hadron 6.37/5.02 TeV

Jet 6.37/5.02 TeV

![](_page_19_Figure_3.jpeg)

Using three energies gives smaller uncertainties than using two

#### Uncertainties of constructing a pp reference

~ few-5% uncertainties on constructing a reference either from pQCD or from data-driven interpolation

- pQCD has few-% uncertainties, but is not identical to interpolation
- Uncertainties on interpolation require fitting with 3 energies

Bypassing the need for a reference with mixed-energy ratios

nPDFs (not pp) are correct baseline for no energy loss

Ratio to pp important to cancel pQCD scale uncertainties and experimental systematic uncertainties

Is it crucial to take the ratio with pp at the same energy?

Brewer, Huss, Mazeliauskas, van der Schee [2108.13434]

#### Bypass constructing a reference: OO/pp at different energies

![](_page_22_Figure_1.jpeg)

Comparable uncertainty cancellation to OO/pp at the same energy, and much smaller than nPDF uncertainty

pO is crucial for constraining nPDFs

#### Oxygen provides unique physics opportunities Flow:

- Unique geometry/ temperature for the same multiplicity Hard probes:
- Possibility to measure energy loss in small systems
- Important constraints on nPDFs (especially gluons) in light nuclei

#### Opportunities for hard probes measurements without a pp reference

- Systematic study of uncertainties of constructing a reference from pQCD or interpolation
- Ratio of oxygen and pp spectra at different energies: good cancellation of pQCD scale uncertainties. nPDF uncertainties dominant
  - Cancellation of experimental systematics?