ATLAS and CMS results on collectivity in small-systems

Soumya Mohapatra

(Columbia University)

On behalf of the ATLAS and CMSCollaborations

11th October 2021

Lisbon

MPI@LHC

QGP in small systems?

QGP

The ridge in *pp* collisions

 $\Delta \phi$

- the *pp* ridge.

 - related to gluon saturation.
- enhance/weaken the ridge.
- impact parameter of the *pp* collision?
- feature?

Try to further our understanding of the origin of

Does it arise from collective (hydro) behavior? Or is it driven by semi-hard processes? Perhaps

If latter, then actively selecting/rejecting events with semi-hard processes (low- p_{T} jets) should

Is there any dependence of the ridge on the

Do HF hadrons in *pp* collisions also show this

Event classes

- *WithJet*: events that have a jet with $p_T > 10$ GeV, but with tracks within $|\eta| \le 1$ of the jet axis removed. Sample dominated by events having a semi-hard process.
- *NoJet*: events that do not have a $p_{\rm T}$ >10 GeV jet.
 - Event sample dominated by soft processes.
- AllEvents: Union of the WithJet and NoJet classes.
- *Inclusive*: Standard *pp* ridge analysis: no jet-based selection of events and no rejection of jetassociated tracks.

ATLAS Collaboration ATLAS-CONF-2020-018

- Single-particle anisotropies extracted from the correlations using the ATLAS template-fit. procedure: Phys. Rev. C 96 (2017) 024908.
- Left panel : v_2 in the four different event classes vs event multiplicity.
- Right panel : ratio to the *Inclusive* case.
- Only a <u>marginal reduction observed</u> in the v_2 for the AllEvents and NoJet cases.

v_2 in different event classes: p_T dependence

- Plots shows the p_T differential v_2 values for the different cases.
- Up to $p_T = 3$ GeV all the AllEvents and NoJet cases have values similar to the Inclusive case.
- The *WithJet* case also consistent but with much larger statistical uncertainties.
- At higher p_T some significant differences are seen, but the AllEvents and NoJet cases are consistent with each other.
- Indicates that the *Inclusive* case has some bias at higher p_T, which is reduced when removing tracks associated with jets.
- ilar to the *Inclusive* case. Incertainties.

Selecting pp collisions based on impact parameter

Collision with small impact parameter

- Is there a way to select *pp* events with small impact parameter?
 - i.e. events where the pp collision is more head-on?
- Darker regions indicate regions having partons with momentum-fraction x>0.01.
 - Figure from Phys. Rev. D 69 114010, (L. Frankfurt, M. Strikman, C. Weiss).
 - Note figure is a schematic only.
- Process with large momentum transfer (large $|q^2|$) implies smaller impact parameter.
- Can impose large q^2 requirement by requiring a Z-boson in the event $(q^2)^2(90 \text{ GeV})^2$.

Collision with large impact parameter

v_2 in Z-boson tagged pp events (multiplicity dependence)

- Can constrain smaller impact parameter indirectly: by requiring the pression for example presence of a Z-boson.
- Use high-luminosity pp data at 8 and 13 TeV.
- The v₂ in Z-tagged events is consistent with inclusive events!

ATLAS Collaboration Eur. Phys. J. C 80 (2020) 64

v_2 in Z-boson tagged pp events (p_T dependence)

- Can constrain smaller impact parameter indirectly: by requiring the presence of a hard scattering, for example presence of a Z-boson.
- Use high-luminosity pp data at 8 and 13 TeV
- The v_2 in Z-tagged events is consistent with inclusive events!

ATLAS Collaboration Eur. Phys. J. C 80 (2020) 64

HF collectivity in pp collisions

- v_2 of prompt D⁰ mesons in *pp* collisions.
- Significant anisotropy observed : Comparable to inclusive hadrons.
- Comparable to v_2 in *p*+Pb collisions at similar multiplicity

10

HF collectivity in *pp* collisions

Measured v_2 of muons produced in the semi-leptonic decays of b and c hadrons.

- Significant anisotropy observed for muons from charm decay: consistent with inclusive hadrons.
- v_2 for muons from b decays consistent with zero.
- These HF anisotropy measurements can lead to further understanding of origin of the pp ridge.

ATLAS Collaboration: Phys. Rev. Lett. 124 (2020) 082301

Photon-ion and photon-proton collisions

Ultra Peripheral Pb+Pb

EM fields of Lorentz contracted nuclei can be treated as flux of quasi-real photons.

In UPC Pb+Pb collisions, Photons coherently emitted from one Pb nuclei can interact with another: γ +Pb collisions

Ultra Peripheral Pb+p

Similar process in UPC Pb+p : γ +p collisions

12

First look at *y+p* collisions

UPC p+Pb collisions.

activity on Pb going side.

and min-bias *p*+Pb events.

- Select enriched sample of $\gamma + p$ events in
- Require no neutron on Pb-going size ZDC, as well as a large region with no detector
- Plots show 2D and 1D 2PCs in *y*+*p* events
- Stronger away-side correlation observed in $\gamma + p$ events compared to min-bias p + Pb.

CMS Collaboration **CMS-PAS-HIN-18-008**

First look at *y+p* collisions

- Larger v_2 observed in $\gamma + p$ events compared to min-bias events
 - Need to be careful as no "non-flow" subtraction is performed
 - i.e. jet-like correlations dominate the measurement.
- Measurements can extend search for collectivity to γ+p events

CMS Collaboration CMS-PAS-HIN-18-008

Collectivity in y+Pb collisions

- *p*+Pb collisions

ATLAS Collaboration Phys. Rev. C. 104 014903

Comparison of v_2 and v_3 measured in y+Pb collisions to those in pp and

Done with "non-flow" subtraction.

The v_2 in γ +Pb are systematically smaller than those in *p*+Pb and *pp* collisions at similar multiplicity

More results for HF collectivity in *p*+Pb

mesons in *p*+Pb collisions.

for prompt D⁰ mesons.

small systems.

CMS Collaboration: Phys. Lett. B 813 (2021) 136036

- The v_2 for prompt and non-prompt D⁰
- v_2 for non-prompt D⁰ mesons smaller than
- Mass dependence in v_2 observed between charm and beauty hadrons in *p*+Pb.
- These results provide insights into the origin of heavy-flavor quark collectivity in

Strange particle flow fluctuations in *p*+Pb

- Flow fluctuation measurements for:
 - Inclusive hadrons (left), K⁰_s (middle), and Λ (right)
 - Compared between *p*+Pb and Pb+Pb
- Larger fluctuations seen in *p*+Pb than in Pb+Pb.
- No dependence of fluctuations on particle species.

CMS Collaboration CMS-PAS-HIN-19-004

ummarv

- Multiple recent measurements from ATLAS and CMS investigate collectivity in small collision systems.
- ATLAS measured $v_2 v_4$ in pp collisions when rejecting tracks in the vicinity of low- p_T jets.
 - The p_{τ} -integrated v₂ only decreases marginally (2-5%) when rejecting the jet associated tracks.
 - No significant change for p_{T} <3 GeV: low- $p_{T} v_{n}$ not affected by presence/absence of jets.
- ATLAS measured v_2 in *pp* events tagged with a *Z*-boson.
 - Studies impact-parameter dependence of ridge.
 - No significant modification from *inclusive* events observed.
- ATLAS and CMS : also measured HF v_2 in *pp* events.
 - *charm* v_2 consistent with inclusive hadrons, *bottom* v_2 consistent with zero.
- CMS & ATLAS : 2PC measurements in $\gamma + p$ and $\gamma + Pb$ events.
 - Smallest collision systems at the LHC.
- CMS : multiple measurements of strange and HF collectivity in *p*+Pb