ALICE results on long- and short-range correlations in high multiplicity pp collisions

J.E. Parkkila¹ for the ALICE Collaboration

¹University of Jyväskylä & Helsinki Institute of Physics, Finland

12th MPI@LHC Lisbon - Oct 12, 2021

Collectivity in large and small systems

JHEP09(2010)091

- ${}_{\odot}$ 2-particle correlations measured as a function of $\Delta\eta$ and $\Delta\varphi$
- $\circ\,$ Structure that is long range in $\Delta\eta$ and generally shows two bumps in $\Delta\varphi \to\,$ "double-ridge"
- "Double-ridge" comes from dominant $\cos(2\Delta\varphi)$ contribution due to the mostly elliptic shape of the collision overlap zone
- Long-range correlations emerge from early times. In large systems, this is due to medium response to the initial transverse geometry (well described by hydrodynamics)

J.E. Parkkila (University of Jyväskylä)

Collectivity in small systems

• Initial-state effects: CGC + fluctuations

K. Dusling et al. PRD 87 5 (2013) 05150, A. Bzdak et al. PRC 87 6 (2013) 064906

Final-state effects: Hydrodynamics

R. D. Weller et al. PLB 774 (2017) 351-356, W. Zhao et al. PLB 780 (2018) 495-500

• **Hybrid models:** How quantitatively they interplay? Relative contributions?

M. Greif et al. PRD 96 9 (2017) 091504, H. Mantysaari et al. PLB 772 (2017) 681-686

Alternatively,

• PYTHIA 8 String Shoving: Pushing the strings resulting in transverse pressure

C. Bierlich et al. PLB 779 (2018) 58-63

- EPOS LHC: Parameterized hydrodynamic evolution in core
 - T. Pierog et al. PRC 92 (2015) 034906

- Constraining the impact parameter of pp collisions to further understand origin of correlations in pp collisions by "event-scale" selection
 - Event scale is set to the momentum transfer in the hard-parton scattering
 - \rightarrow Measurements of ridge yield (ALICE JHEP05(2021)290) and v_n (Preliminary) in events tagged with jets or leading particle

J.E. Parkkila (University of Jyväskylä)

Correlation measurements in ALICE

0.465

3 $4 \rho^2$

JHEP05(2021)290

(rad.)

^{0.460} _dNJp) (^{0,10} _{0.465} _{0.465} 0.46

- V0: Minimum bias and high multiplicity triggering
- ITS: vertexing and reconstruction

• TPC: particle tracking (charged particles) at $|\eta| < 0.9$ High-multiplicity events: 700M (High-multiplicity trigger)

Ň

 \odot Large rapidity gap (1.6 $<|\Delta\eta|<$ 1.8) to avoid nonflow contribution

• Clear ridge in high-multiplicity events, while no ridge in minimum bias events

Description of jet fragmentation is compared with models: qualitative agreement of PYTHIA 8 Tune 4C

Multiplicity-dependent near-side peak

 Data and String Shoving show increasing near-side yield with increasing multiplicity, while that is not the case for EPOS LHC and PYTHIA 8 Tune 4C

Long-range $\Delta \varphi$ correlations and flow extraction

 $egin{aligned} Y(\Deltaarphi) &= G(1+2 v_{2,2} \cos(2\Deltaarphi) + 2 v_{3,3} \cos(3\Deltaarphi)) + {\it F} Y_{
m LM}(\Deltaarphi) \end{aligned}$

- Subtract the remaining away-side jet contribution in high multiplicity event relative to the low multiplicity term
- F: Ratio of away-side jet fragments in high-multiplicity to low-multiplicity events (60–100%), $F = 1.304 \pm 0.018$
- Assumptions
 - No ridge or flow in the LM-template
 - No away-side jet modifications (quenching) in HM events relative to the LM-template

Near-side and away-side jet fragmentation

Away

- ${\circ}$ Away-side jet yield : $Y_{\rm jet}^{\rm Away} = {\it F} \, Y_{\rm jet}^{\rm Away, LM}$
- Near-side jet yield measured by short-range correlations (see the backup)
- $\hfill \label{eq:product}$ $\hfill \hfill \hfill$
- The relative away-side jet contribution, *F*, has been tested by comparing the ratios from the ALICE and the PYTHIA 8

Ridge yield and v_n (TPC-TPC): 0–0.1%

 \odot Decreases with increasing $p_{
m T} > 1~{
m GeV}/c$

- CMS yield is higher than ALICE mainly due to different multiplicity selection
- EPOS LHC describes $p_{\rm T}$ dependence, overestimating the yield
- String Shoving shows steeper *p*_T dependence, underestimating it

- Comparable with ATLAS result
- Note that multiplicity class for ATLAS is classified with central particles ($|\eta| < 2.5$, $p_{\rm T} > 0.4$ GeV/c), $N_{\rm Mult}^{\rm ATLAS} > 60$

• Event-scale selection: requirement of the presence of a hard scattering (tagging by minimum $p_{\rm T}$ of reconstructed jet or leading particle)

• The ridge is still visible with event-scale selection

Event-scale dependent ridge yield

 $\circ\,$ Jet fragmentation (PYTHIA 8 with String Shoving, in contrast, overshoots the jet fragmentation in backup) $\rightarrow\,$ Challenging existing models

J.E. Parkkila (University of Jyväskylä)

Weak or no sensitivity to event-scale selection with the uncertainties

• Note that the template does not impose event-scale selection

• Event-scale dependent ridge yields and v_n are studied

 \circ Increasing trend for the ridge yield with leading particle p_{T} and jet p_{T} , and no significant dependence for v_{n}

Compared to EPOS LHC and PYTHIA 8 String Shoving, leading to further improvement of these models
 Flow extraction with the template fit is tested

• Relative increase of the jet yield for high multiplicity w.r.t low multiplicity template is properly considered

Thank You!

- Weak sensitivity for event-scale dependence
- Note that low-multiplicity events does not impose event-scale bias

- \odot The ridge yield tends to increase with increasing $p_{\mathrm{T,Lead}}$ or $p_{\mathrm{T,Jet}}$
- The increase of the ridge yield is also visible for two models
 - EPOS LHC largely overestimates the ridge yields while PYTHIA with String Shoving underestimates them
 - PYTHIA with String Shoving, in contrast, overshoots the jet fragmentation (in backup)

Event-scale dependent jet yield

 $_{\odot}\,$ Increase with increasing $\rho_{\rm T,min}^{\rm LP}$ or $\rho_{\rm T,min}^{\rm jet}$, similar for models, stronger for EPOS LHC

EPOS LHC (PYTHIA 8 String Shoving) overestimates (underestimates) the ridge yield

 $\circ\,$ Jet fragmentation (PYTHIA 8 with String Shoving, in contrast, overshoots the jet fragmentation in backup) $\rightarrow\,$ Challenging existing models

• Is the collective flow measured correctly in small systems?

- Yes
- Away-side jets are properly subtracted with the asumption that jets are not modified in high multiplicity events (counter intuitive?)
- o however, precise measurement on jet yields(quenching) will be needed

• How to probe a creation of the QGP in small systems?

- precise determination of the η/s with larger systems is crucial but how precise?
- further understanding on initial state before hydrodynamic takes place including sub-nucleon substructure(arXiv:2106.05019 etc)
 - revisit thermal photon production but hard to measure in small systems?
 - heavy quarks would help?