Recent results on hard and soft probes at RHIC

Yue-Hang Leung

Lawrence Berkeley National Laboratory

MPI @ LHC 2021 Oct 14, 2021

12th MPI at LHC

Supported in part by: U.S. DEPARTMENT OF ENERGY

RHIC and BES-II

PHENIX completed data taking in 2016

- Ongoing analysis efforts
- STAR BES-II (2018-2021)

• Collider mode: $\sqrt{s_{NN}} = 7.7-19.6$ GeV $\mu_B = 420 - 200 \, MeV$

• Fixed-target mode: $\sqrt{s_{NN}} = 3.0-13.7$ GeV $\mu_B = 750 - 280 \, MeV$

Au-Target =0.25mm thickness 1% interaction probability

Probing the QCD Phase Diagram

QGP formation at top RHIC energies

flavor, strangeness, jets etc.

1. Top RHIC energies: $\sqrt{s_{NN}} = 200 \text{ GeV}$ $(\sqrt{s_{\rm NN}} = 54.4, 27 \, {\rm GeV})$

Selected results on

- Heavy flavor
 - Photons
 - Strangeness
 - Global polarization
 - Net-proton cumulants

Yue Hang Leung - Lawrence Berkeley National Laboratory

D_s Production in Au+Au Collisions at 200 GeV

- D[±]_s/D⁰ in Au+Au 200 GeV
 - Significant enhancement compared to p+p 5.02 TeV and **PYTHIA**
 - Comparable to Pb+Pb at 5.02 TeV
 - No strong centrality dependence

Models incorporating coalescence and thermal abundance of strange quarks qualitatively describe data

STAR, PRL 127, 092301 (2021)

Energy Dependence of HF Electron v₂

- HF e v₂ at 54.4 GeV comparable to that at 200 GeV
- Hint of lower HF e v₂ at 27 GeV

- PHSD calculation comparable

T. Song et al., PRC 96, 014905 (2017)

Charm quark interacts strongly with the medium at 54.4 GeV

Energy Dependence of J/ψ Suppression

- Suppression of J/ψ in Au + Au collisions at 54.4 GeV observed with high precision

 - At LHC energies, J/ψ R_{AA} increases due to regeneration
 - Interplay among dissociation, regeneration

No significant energy dependence of J/ψ R_{AA} in central collisions from 17.2 to 200 GeV

Yue Hang Leung - Lawrence Berkeley National Laboratory

Energy Dependence of J/ψ Suppression

- Effects beyond nPDF modification alone are required to describe quarkonia production in p+Au at backward rapidity
- At LHC energies, J/ψ R_{AA} increases due to regeneration

No significant energy dependence of J/ψ R_{AA} in central collisions from 17.2 to 200 GeV

Interplay among dissociation, regeneration, cold nuclear matter effects

Direct Photons in 200 GeV Au+Au Collisions

• Photons do not experience strong interaction

> -> probes space-time evolution of matter produced

Direct photons = Inclusive photons - decay photons

- New PHENIX measurement from 2014 Au+Au 200 GeV
 - high statistical precision
 - consistent with published results

ϕ Production in Cu+Au and U+U Collisions at 200 GeV

- At high p_T, similar suppression for all species: parton energy loss
- At intermediate p_T , $R_{AB}(p) \ge R_{AB}$ (ϕ , K^*) $\ge R_{AB}$ (π^0 , η)
 - Interplay of radial flow, strangeness enhancement, coalescence hadronization

- ϕ follows NCQ scaling in Cu+Au, U+U 200 GeV
 - Consistent with ϕ production via coalescence, similar to HF

Strangeness Production at 27 and 54.4 GeV

• Ω/ϕ ratio enhanced at intermediate p_T for $\sqrt{s_{NN}} = 19.6 - 200 \text{ GeV}$

 NCQ scaling holds for multi-strange baryons at 54.4 GeV

ϕ , Ξ , Ω coalescence hadronization as dominant production mechanism at 54.4 GeV

11

First Measurement of Ξ and Ω Global Polarization

 Λ global polarization: evidence for the most vortical fluid

Global polarization is the alignment between:

Decay proton tends to be emitted along

positive E global polarization observed

Results confirm the global polarization picture based on the system fluid vorticity

Yue Hang Leung - Lawrence Berkeley National Laboratory

6th-Order Cumulant of Net-Proton Multiplicity in 27-200 GeV Au+Au Collisions

Cumulants characterize event-by-event fluctuations

 $C_1 = \langle N \rangle$ $\delta N = N - \langle N \rangle$ $C_2 = \langle (\delta N)^2 \rangle$ $C_3 = \langle (\delta N)^3 \rangle$ $C_4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2$ $C_5 = \langle (\delta N)^5 \rangle - 5 \langle (\delta N)^3 \rangle \langle (\delta N)^2 \rangle$ $C_6 = <(\delta N)^6 > -15 < (\delta N)^4 > <(\delta N)^2 > -10 < (\delta N)^3 >^2 + 30 < (\delta N)^2 >^3$

- Higher order cumulants of net-proton multiplicity probe the nature of phase transition Ratios of cumulants cancel system size to first order
- $C_6/C_2 < 0$ predicted as a signature of cross-over transition (Lattice QCD)
- $C_6/C_2 > 0$ from UrQMD (no QCD transition)
 - Data, albeit with large uncertainties, favor smooth cross-over at Au+Au 200 GeV
 - and LQCD calculations

If confirmed with higher statistics, this will be the first direct comparison between data

Yue Hang Leung - Lawrence Berkeley National Laboratory

2. Finite μ_B region: $\sqrt{s_{NN}} = 7.7 - 27$ GeV

Selected results on

• Net proton cumulants

Search for Critical Fluctuations

- Finding conjectured critical point (CP) is one of the main goals of the BES program
- Cumulants of conserved quantities (Q, B, S) are sensitive to the correlation length, which diverges at CP
- Non-monotonic behavior of $\kappa\sigma^2$ proposed as signature of CP Кσ

M. A. Stephanov, PRL 102,032301(2009) M. A. Stephanov, PRL 107,052301(2011)

Search for Critical Fluctuations

STAR, PRL 126 (2021) 092301

• Non-monotonic behavior of $\kappa\sigma^2$ vs. $\sqrt{s_{NN}}$ in 0-5% central collisions observed at 3.1σ

Hint of critical fluctuations, look forward to BES-II data

Yue Hang Leung - Lawrence Berkeley National Laboratory

3. High μ_B region: $\sqrt{s_{NN}} = 3$ GeV

Selected results on • Light flavor

- Strangeness
- Global polarization
- Hypernuclei

Collectivity at 3 GeV

- v₂ values are negative and NCQ scaling violated at 3 GeV
- Disappearance of partonic collectivity at 3 GeV

Medium created in 3 GeV Au+Au collisions dominated by baryonic interactions

- UrQMD cascade model fails to describe data
- Including baryonic mean field generates trends seen in data

Particle Yields at 3 GeV

- π , K, p, light nuclei mid-rapidity p_T spectra fitted with blast-wave function
 - Simultaneous fit gives good description to all particles considered
 - Different trend in in kinetic freeze-out temperature compared to $\sqrt{s_{NN}} > 7.7$ GeV

Different EOS at 3 GeV compared to that at higher collision energies

Canonical ensemble (CE) statistics is mandatory to describe strange particle yields at 3 GeV

A Global Polarization at 3 GeV

3 GeV: Largest Λ global polarization yet observed

$\bar{P_{\Lambda}} = 4.91 \pm 0.81(stat) \pm 0.15(syst)\%$

Comparisons to URQMD and AMPT seem to suggest that vorticity is affected strongly by the state of the system

• P_{Λ} at 3 GeV consistent with:

- URQMD (hadronic transport)
- AMPT (partonic transport)
- URQMD overestimates P_{Λ} at

- Larger P_{Λ} for more peripheral collisions,
 - consistent with the increased initial global angular momentum in the system

Hypernuclei Lifetime and Binding energy

Hypernuclei are nuclei containing at least one hyperon

STAR measured hypernuclei lifetime and binding energy using 3 GeV data

> Provide information on the Y-N interaction and hypernuclear structure

Hypertriton lifetime puzzle: $^{3}_{\Lambda}H$ lifetime observed to be smaller than Λ , with tension between different experiments

12th MPI at LHC

• ³_{\Lambda}H: ~0.2 MeV

• ⁴_{\lambda}H: ~2.2 MeV

Loosely bound objects

 $\tau(^{3}_{\Lambda}\text{H}) = 232 \pm 29(\text{stat}) \pm 37(\text{syst})[\text{ps}]$ $\tau(^{4}_{\Lambda}H) = 217 \pm 8(stat) \pm 12(syst)[ps]$

 $B_{\Lambda}(^{4}_{\Lambda}\text{H}) = 2.24 \pm 0.06(\text{stat}) \pm 0.18(\text{syst})[\text{MeV}]$ $B_{\Lambda}(^{4}_{\Lambda}\text{He}) = 2.37 \pm 0.12(\text{stat}) \pm 0.14(\text{syst})[\text{MeV}]$

Combine with other **BES-II** data to improve statistical precision

-> Help resolve the $^{3}_{\Lambda}$ H *lifetime puzzle*

First Measurement of Hypernuclei v₁ and dN/dy at 3 GeV

- Light nuclei v₁ slopes follow <u>baryon number</u> scaling in 5-40% 3 GeV Au+Au collisions
- First observation of hypernuclei collectivity in HI collisions
- Hypernuclei v₁ similar to light nuclei with similar mass

Consistent with hypernuclei production from coalescence of hyperons and nucleons

- Different trends in rapidity distribution in central (0-10%) and mid-central (10-50%) collisions for ${}^{4}_{\Lambda}H$
- Likely driven by collision geometry, e.g. spectators in non-central collisions

Summary

- to map the QCD phase diagram
 - formation via quark coalescence
 - J/ψ production in QGP
 - from 39 GeV to 2.76 TeV

 - coalescence of baryons

Thank you for listening!

Look forward to BES-II data and high statistics Au+Au 200 GeV data from sPHENIX and STAR!

Backup slides follow

Yue Hang Leung - Lawrence Berkeley National Laboratory

Quarkonia production in small systems

Effects beyond nPDF modification alone are required to describe quarkonia production in p(³He)+Au

Quarkonia production in small systems

Effects beyond nPDF modification alone are required to describe quarkonia production in p(³He)+Au

Energy dependence of Hypernuclei Mid-Rapidity Yield

- Thermal model which adopts the canonical ensemble and coalescence (DCM) model describes ³_AH yield at 3 GeV
- Yield of ${}^4_{\Lambda}H$ not described by models

