Soft Probes in Heavy Ion Collisions with CMS, ATLAS and ALICE

Prabhat R. Pujahari (for ALICE, ATLAS, CMS collaborations) Indian Institute of Technology Madras

> 12th International workshop on multiple partonic interactions at the LHC, 11-15 Oct 2021, Lisbon

ICEVICE CD medium properties in avy-ion (A-A) collisions

In A-A collisions:

- 1) What are the properties of the medium created ?
- 2) How partons interact with the medium ?

In small systems (p-p & p-A):

1) Do we observe similar effects in small systems as in A-A collisions ?

Hot QCD medium properties in heavy-ion (A-A) collisions

02

How did it evolve with energy ?

Charged particle multiplicity and transverse energy density

14/10/21 P. Pujahari

Soft probes results from CMS, ATLAS and ALICE

MPI, Lisbon, Portugal

Charged-particle spectra and R^*_{AA} in XeXe collisions

P. Pujahari

Soft probes results from CMS, ATLAS and ALIC

<N

300

400

5.44 TeV XeXe R*

5.02 TeV PbPb R

 $6.4 \le p_{\perp} < 7.2 \text{ GeV}$

ml < 1

• 🖸

200 (N_{part}

þ

Identified-particle spectra and ratio in XeXe collisions

Perfect fluid paradigm

A perfect fluid

 v_n measurements well described by hydrodynamic models with very low sheared viscosity to entropy (0.07 ≤ η/s ≤ 0.2) → almost perfect fluid

- \mathbf{I} v₂ mainly driven by geometry of the initial state (IS)
- \mathbf{I} v₃ driven by fluctuations of the IS

Mixed higher-order anisotropic flow in PbPb

14/10/21 P. Pujahari

Multi-harmonic flow correlations in PbPb collisions

P. Pujahari

Centrality dependence of the SC(k,l,m) are in good agreement with the predictions from the hydrodynamical models

□ Indication of correlation between flow harmonics (v_2, v_3, v_4) during the medium evolution

• Provides new constraints for the initial conditions of the matter created in heavy-ion collisions

v_{n=2,3,4} XeXe vs. PbPb

v₂ for XeXe are larger than PbPb for the most central collisions
Hydro models with Xe nuclear deformation better describe the v₂[XeXe]/v₂[PbPb] compared to models assuming spherical Xe shape for n=2 in central collisions

Longitudinal flow decorrelations in XeXe collisions

• Hydrodynamical models fail to describe the longitudinal flow decorrelations between XeXe and PbPb collisions

14/10/21 P. Pujahari

PID v_2 in XeXe collisions

□ For $p_T < 3$ GeV/c, v_2 shows a mass ordering attributed to the interplay between anisotropic flow and radial flow

 \Box Hydrodynamical models qualitatively reproduce the mass ordering at $p_T < 1$ GeV/c

A better agreement between data and model is observed in central collisions compared to peripheral

P. Pujahari

Strange hadrons v₂ in PbPb collisions

Hydrodynamic calculations of 2- and 4-particle v₂ with AMPT initial conditions qualitatively consistent with the data

P. Pujahari Soft probes resu

Heavy quarks collectivity in PbPb

□ Inclusive J/ ψ v₂ at forward and midrapidity are in agreement with each other and positive up to 12 < p_T < 20 GeV/c

 \Box The v₂ values for $\Upsilon(1S)$ is consistent with zero in contrasts with positive J/ ψ v₂

Nature of the "Ridge" – the small system puzzle

- \checkmark Multi-particle correlation
- \checkmark Similar patterns for all systems
- ✓ Initial state fluctuations play an important role

Heavy quarks collectivity in small system

□ Significant positive v_2 values are observed for D⁰ mesons with $p_T > 2 \text{ GeV/c}$

The collective behavior of charm quarks in high-multiplicity pPb collisions is weaker than that of the light-flavor quarks

Charm and beauty long-range correlations in pPb

14/10/21

P. Pujahari

P. Pujahari

Longitudinal local $\Lambda + \overline{\Lambda}$ polarization in PbPb

□Hyperon polarization at the LHC is similar in magnitude to top RHIC energy for the central collisions and smaller in semi-central collisions

 \Box At $p_T < 2.0$ GeV, polarization at the LHC is smaller than the RHIC in semi-central collisions

P. Pujahari

Long range correlations in ultraperipheral PbPb collisions

\mathbf{y} p interactions within ultra-peripheral p+Pb collisions

Summary

We did create a strongly interacting medium in A-A collisions at the LHC!

- ✤Behave like a perfect fluid and explain with hydro
- No strong energy dependence of the evolution of the system is observed
- Collectivity observed in small system? Which mechanism lies behind?
- ✓ Many interesting physics results in large, medium and small collision systems at the LHC
- ✓ Future heavy-ion program at the LHC (Run 3 and 4) with the upgraded detector systems will provide more exciting opportunities!

🝌 Thank you