# Accessing the initial conditions of ultrarelativistic heavy-ion collisions



You Zhou

Niels Bohr Institute



THE VELUX FOUNDATIONS

# Evolution in the Little Bang



![](_page_1_Picture_2.jpeg)

![](_page_1_Picture_3.jpeg)

# Current status of initial state models

#### THERE ARE CURRENTLY THREE CATEGORIES OF MODELS.

- "sharp" models: IP-GLASMA and TRENTO 2016 (v-USPhydro) [Schenke, Shen, Tribedy 2005.14682]

[Bass, Bernhard, Moreland 1605.03954]

Nucleons have a width of ~0.5fm (trento), 3 sub-nucleons with size ~0.3fm (IP-Glasma). Trento is used for the entropy density at the beginning of hydro. <u>IP-Glasma is the only</u> model which incorporates a realistic pre-equilibrium evolution with longitudinal cooling.

#### "fat" models: TRENTo 2019 and JETSCAPE

[Bass, Bernhard, Moreland Nature Phys. 15 (2019)] [JETSCAPE Collaboration 2011.01430, 2010.03928]

The Trento parametrization is now used for the energy density at tau=0+. There is no substructure. The nucleon width is now ~1fm. Very smooth profiles.

#### – "lumpy fat" models: TRENTo 2018 and Trajectum

[Bass, Bernhard, Moreland 1808.02106] [Nijs, van der Schee, Gürsoy, Snellings 2010.15130, 2010.15134]

The Trento parametrization is the energy density at tau=0+. Substructure is included: 4-6 constituents with width ~0.5fm. Profiles with some 'old school' lumpiness.

![](_page_2_Figure_11.jpeg)

Credits: G. Giacalone @ IS2021

![](_page_2_Picture_12.jpeg)

### How can we access the initial conditions in EXP ?

![](_page_2_Picture_14.jpeg)

UNIVERSITY OF COPENHAGEN

![](_page_2_Picture_17.jpeg)

# Studying QGP with flow

Spatial eccentricity in the initial state converted to momentum anisotropic particle distributions

•known as **elliptic flow** 

reflect initial eccentricity and transport properties of QGP

![](_page_3_Figure_5.jpeg)

![](_page_3_Picture_6.jpeg)

![](_page_3_Picture_8.jpeg)

J.Y. Ollitrault, PRD 46 (1992) 229

### From initial anisotropy to anisotropic flow

![](_page_4_Figure_1.jpeg)

# $P(v_n)$ from multi-particle cumulants of $v_n$

![](_page_5_Figure_1.jpeg)

![](_page_5_Figure_2.jpeg)

Multi-particle **correlations** of single harmonic  $v_n$ 

$$\langle \langle \cos(n\phi_1 - n\phi_2 + n\phi_3 - n\phi_4) \rangle \rangle = \langle v_n^4 \cos(n\Phi_n - n\Phi_n + n\Phi_n - n\Phi_n) \rangle = \langle v_n^4 \rangle$$
  
Multi-particle *cumulants* of single harmonic v<sub>n</sub>  

$$\langle \langle \cos(n\phi_1 - n\phi_2 + n\phi_3 - n\phi_4) \rangle \rangle_c = \langle \cos(n\phi_1 - n\phi_2 + n\phi_3 - n\phi_4) \rangle$$
  

$$- \langle \langle \cos(n\phi_1 - n\phi_2) \rangle \rangle \langle \langle \cos(n\phi_3 - n\phi_4) \rangle \rangle$$
  

$$- \langle \langle \cos(n\phi_1 - n\phi_4) \rangle \rangle \langle \langle \cos(n\phi_2 - n\phi_3) \rangle \rangle$$
  

$$= \langle v_n^4 \rangle - 2 \langle v_n^2 \rangle^2$$

$$\begin{split} v_n\{2\} &= \sqrt[2]{\langle v_n^2 \rangle}, \\ v_n\{4\} &= \sqrt[4]{2\langle v_n^2 \rangle^2 - \langle v_n^4 \rangle}, \\ v_n\{6\} &= \sqrt[6]{\langle v_n^6 \rangle - 9\langle v_n^2 \rangle \langle v_n^4 \rangle + 12\langle v_n^2 \rangle^3}, \\ v_n\{8\} &= \sqrt[8]{\langle v_n^8 \rangle - 16\langle v_n^2 \rangle \langle v_n^6 \rangle - 18\langle v_n^4 \rangle^2 + 144\langle v_n^2 \rangle^2 \langle v_n^4 \rangle - 144\langle v_n^2 \rangle^4}. \end{split}$$

![](_page_5_Picture_8.jpeg)

# $P(v_n)$ and $P(\varepsilon_n)$

![](_page_6_Figure_1.jpeg)

<sup>2</sup><sup>m</sup>MPI at LH0

- Investigating  $p(v_2)$  with multi-particle cumulants
  - First three moments done at LHC RUNI & 2, Kurtosis at RUN3
  - Ultra-higher order cumulants e.g.  $v_2{10}{12}{14}{16}$  is implemented for HL-LHC

# (Normalized) Symmetric Cumulant

#### Symmetric cumulants:

 $SC(m,n) = \langle v_m^2 \, v_n^2 \rangle - \langle v_m^2 \rangle \, \langle v_n^2 \rangle$ 

#### PHYSICAL REVIEW C 89, 064904 (2014)

Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations

Ante Bilandzic,<sup>1</sup> Christian Holm Christensen,<sup>1</sup> Kristjan Gulbrandsen,<sup>1</sup> Alexander Hansen,<sup>1</sup> and You Zhou<sup>2,3</sup> <sup>1</sup>Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark <sup>2</sup>Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands <sup>3</sup>Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands

![](_page_7_Figure_6.jpeg)

#### ALICE, PRL117, 182301 (2016)

- Comparison of SC and Normalized SC (NSC) to hydrodynamic calculations
  - Although hydro describes v<sub>n</sub> fairly well, there is not a single centrality for which a given η/s parameterization describes simultaneously SC and NSC -> tighter constraints!
  - NSC(3,2) measurements provide direct access into the initial conditions (despite details of systems evolution)
  - what is the general correlation between any order of  $v_n^k$  and  $v_m^p$  and the correlations among multiple flow coefficients

![](_page_7_Picture_13.jpeg)

![](_page_7_Picture_14.jpeg)

# $P(v_m, v_n, v_k, \ldots)$

#### PHYSICAL REVIEW C 103, 024913 (2021)

Generic algorithm for multiparticle cumulants of azimuthal correlations in high energy nucleus collisions

> Zuzana Moravcova<sup>()</sup>, Kristjan Gulbrandsen<sup>()</sup>, and You Zhou<sup>†</sup> Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark

### Mixed harmonic cumulants with 4-particles

$$\operatorname{MHC}(v_m^2, v_n^2) = \operatorname{SC}(m, n) = \left\langle v_m^2 \, v_n^2 \right\rangle - \left\langle v_m^2 \right\rangle \, \left\langle v_n^2 \right\rangle$$

### Mixed harmonic cumulants with 6-particles

$$\begin{split} \text{MHC} \left( v_2^4, v_3^2 \right) &= \langle \langle e^{i \left( 2\varphi_1 + 2\varphi_2 + 3\varphi_3 - 2\varphi_4 - 2\varphi_5 - 3\varphi_6 \right)} \rangle_c \\ &= \langle v_2^4 v_3^2 \rangle - 4 \langle v_2^2 v_3^2 \rangle \langle v_2^2 \rangle - \langle v_2^4 \rangle \langle v_3^2 \rangle \\ &+ 4 \langle v_2^2 \rangle^2 \langle v_3^2 \rangle . \\ \text{MHC} \left( v_2^2, v_3^4 \right) &= \langle \langle e^{i \left( 2\varphi_1 + 3\varphi_2 + 3\varphi_3 - 2\varphi_4 - 3\varphi_5 - 3\varphi_6 \right)} \rangle_c \\ &= \langle v_2^2 v_3^4 \rangle - 4 \langle v_2^2 v_3^2 \rangle \langle v_3^2 \rangle - \langle v_2^2 \rangle \langle v_3^4 \rangle \\ &+ 4 \langle v_2^2 \rangle \langle v_3^2 \rangle^2 . \\ \text{MHC} \left( v_2^2, v_3^2, v_4^2 \right) &= \langle \langle e^{i \left( 2\varphi_1 + 3\varphi_2 + 4\varphi_3 - 2\varphi_4 - 3\varphi_5 - 4\varphi_6 \right)} \rangle_c \\ &= \langle v_2^2 v_3^2 v_4^2 \rangle - \langle v_2^2 v_3^2 \rangle \langle v_4^2 \rangle - \langle v_2^2 v_4^2 \rangle \langle v_3^2 \\ &- \langle v_3^2 v_4^2 \rangle \langle v_2^2 \rangle + 2 \langle v_2^2 \rangle \langle v_3^2 \rangle \langle v_4^2 \rangle. \end{split}$$

#### Multi-particle mixed harmonic cumulants

- correlation between v<sub>m</sub><sup>k</sup>, v<sub>n</sub><sup>l</sup> and v<sub>p</sub><sup>q</sup>
- correlation between v<sub>m</sub><sup>k</sup> and v<sub>n</sub><sup>l</sup>

### Mixed harmonic cumulants with 8-particles

 $\mathrm{MHC}(v_2^6, v_3^2) = \langle \langle e^{i(2\varphi_1 + 2\varphi_2 + 2\varphi_3 + 3\varphi_4 - 2\varphi_5 - 2\varphi_6 - 2\varphi_7 - 3\varphi_8)} \rangle \rangle_c$  $= \langle v_2^6 v_3^2 \rangle - 9 \langle v_2^4 v_3^2 \rangle \langle v_2^2 \rangle - \langle v_2^6 \rangle \langle v_3^2 \rangle$  $-9 \langle v_2^4 \rangle \langle v_2^2 v_3^2 \rangle - 36 \langle v_2^2 \rangle^3 \langle v_3^2 \rangle$  $+18\langle v_2^2\rangle\langle v_3^2\rangle\langle v_2^4\rangle+36\langle v_2^2\rangle^2\langle v_2^2\,v_3^2\rangle.$  $\mathrm{MHC}(v_2^4, v_3^4) = \langle \langle e^{i(2\varphi_1 + 2\varphi_2 + 3\varphi_3 + 3\varphi_4 - 2\varphi_5 - 2\varphi_6 - 3\varphi_7 - 3\varphi_8)} \rangle \rangle_c$  $= \langle v_2^4 v_3^4 \rangle - 4 \langle v_2^4 v_3^2 \rangle \langle v_3^2 \rangle$  $-4\langle v_2^2 v_3^4\rangle\langle v_2^2\rangle-\langle v_2^4\rangle\langle v_3^4\rangle$  $-8 \langle v_2^2 v_3^2 \rangle^2 - 24 \langle v_2^2 \rangle^2 \langle v_3^2 \rangle^2$  $+4 \langle v_{2}^{2} \rangle^{2} \langle v_{3}^{4} \rangle + 4 \langle v_{2}^{4} \rangle \langle v_{3}^{2} \rangle^{2}$  $+32\langle v_{2}^{2}\rangle\langle v_{3}^{2}\rangle\langle v_{2}^{2}v_{3}^{2}\rangle.$  $\mathrm{MHC}(v_2^2, v_3^6) = \langle \langle e^{i(2\varphi_1 + 3\varphi_2 + 3\varphi_3 + 3\varphi_4 - 2\varphi_5 - 3\varphi_6 - 3\varphi_7 - 3\varphi_8)} \rangle \rangle_c$  $= \langle v_2^2 v_3^6 \rangle - 9 \langle v_2^2 v_3^4 \rangle \langle v_3^2 \rangle - \langle v_3^6 \rangle \langle v_2^2 \rangle$  $-9\langle v_3^4 \rangle \langle v_2^2 v_3^2 \rangle - 36\langle v_2^2 \rangle \langle v_3^2 \rangle^3$  $+18 \langle v_{2}^{2} \rangle \langle v_{3}^{2} \rangle \langle v_{3}^{4} \rangle + 36 \langle v_{3}^{2} \rangle^{2} \langle v_{2}^{2} v_{3}^{2} \rangle.$ 

![](_page_8_Picture_13.jpeg)

![](_page_8_Picture_15.jpeg)

## Correlations between $v_2^k$ and $v_3^p$

![](_page_9_Figure_1.jpeg)

• First measurement of correlations between higher order moments of  $v_2$  and  $v_3$ 

- characteristic +, -, + signs observed for 4-, 6- and 8-particle cumulants of mixed harmonic
- Final state results quantitatively reproduced by the initial state correlations

You Zhou (NBI)

 Experimental data provides direct constraints on the correlations of higher order moments of eccentricity coefficients

# $\Psi_n$ correlations: P( $\Psi_m$ , $\Psi_n$ , $\Psi_k$ )

#### $P(\varphi_m,\varphi_n,\varphi_k)$

#### $P(\psi_m, \psi_n, \psi_k)$

![](_page_10_Figure_3.jpeg)

Z. Qiu etc, PLB 707 (2012) 151

Stronger initial symmetry plane correlations results in stronger final state flow symmetry plane correlations

**MPI at LH** 

• MC-KLN tends to generate stronger symmetry plane correlations

# $\Psi_n$ correlations: P( $\Psi_m$ , $\Psi_n$ , $\Psi_k$ )

![](_page_11_Figure_1.jpeg)

- $\rho_{mn}$  (probes the symmetry plane correlations)
  - Agreement between ALICE and ATLAS (different eta coverage)
  - Results are compatible with hydrodynamic calculations using IP-Glasma & η/s=0.095,
  - calculations using other initial conditions have difficulties to quantitatively describe the data.
- The next: test  $\rho_{5432} = \rho_{532} * \rho_{422}$

![](_page_11_Picture_7.jpeg)

![](_page_11_Picture_9.jpeg)

# With Bayesian analyses — End Game?

#### J.E. Bernhard etc, Nature Physics, 15, 1113 (2019)

![](_page_12_Figure_2.jpeg)

#### Calibrated to: Pb-Pb 2.76 and 5.02 TeV Wounded KLN nucleon 1.0 -1.0 -0.5 0 0.5 D 0.08 0.3 Calibrated to: Pb-Pb 2.76 and 5.02 TeV Posterior median 0.06 90% credible region 0.2 🖏 0.04 n/S 0.1 0.02 0 0 150 200 150 200 250 300 250 300 Temperature (MeV) Temperature (MeV)

#### JETSCAPE, Phys. Rev. Lett. 126, 242301 (2021)

![](_page_12_Figure_5.jpeg)

`**₹"**₽⊒ `````

UNIVERSITY OF

COPENHAGEN

![](_page_12_Figure_6.jpeg)

![](_page_12_Figure_7.jpeg)

![](_page_12_Picture_8.jpeg)

![](_page_12_Picture_9.jpeg)

![](_page_12_Picture_10.jpeg)

![](_page_12_Picture_11.jpeg)

### <pt>> - vn correlations

Shape of the fireball: Anisotropic flow

**\bullet** Size of the fireball: radial flow, [ $p_{\rm T}$ ]

Initial geometry and fluctuations of shape and size

 $\clubsuit$  Final state: correlation between  $v_n$  and  $p_{\rm T}$ 

$$\rho(v_n^2, [p_T]) = \frac{cov(v_n^2, [p_T])}{\sqrt{var(v_n^2)}\sqrt{var([p_T])}}$$
P. Bozek etc, PRC96 (2017) 014904
$$cov(v_n^2, [p_T]): 3\text{-particle correlation (2 azimuthal, I [p_T])}$$

$$\left\langle \frac{\sum_{i \neq j \neq k} w_i w_j w_k e^{in\phi_i} e^{-in\phi_j}(p_{T,k} - \langle \langle p_T \rangle \rangle)}{\sum_{i \neq j \neq k} w_i w_j w_k} \right\rangle_{evt}$$

$$\left\langle \sqrt{var(v_n^2)}: 2 \text{ and } 4\text{-particle azimuthal correlations}$$

$$= v_n \{2\}^4 - v_n \{4\}^4$$

![](_page_13_Figure_6.jpeg)

![](_page_13_Figure_7.jpeg)

**MPI at LH** 

![](_page_13_Picture_8.jpeg)

# ρ<sub>2</sub> in Pb-Pb

![](_page_14_Figure_1.jpeg)

ALI-PREL-494367

- IP-Glasma-IC: IP-Glasma + MUSIC + UrQMD works well for Pb-Pb
- TRENTo-IC based calculations show strong centrality dependence, negative values for centrality >40%
  - v-USPhydro, Trajectum, JETSCAPE
- The difference is from the initial stage: geometric effects or initial momentum anisotropy (CGC)?
  - No significant difference between the "full IP-Glasma" and "FSE only" for the presented centralities
  - Difference not from initial momentum anisotropy and confirm the different geometric effects

![](_page_14_Picture_11.jpeg)

# $\rho_2$ in Xe-Xe

#### v-USPhydro, PRC103 (2021) 2, 024909

![](_page_15_Figure_2.jpeg)

Significant differences of initial state calculations using different deformation parameter in central Xe-Xe collisions

- $\rho_2$  is sensitivties to  $\beta_2$
- The uncertainty of current v-USPhydro calculations is too large to draw a confirm conclusions

You Zhou (NBI)

• Experimental data (in Xe-Xe@LHC and U-U@RHIC) open a new window to study nucleon deformation.

![](_page_15_Picture_8.jpeg)

# Probe triaxial structure of Xe

![](_page_16_Figure_1.jpeg)

\* Better agreement between LHC data and calculations with  $\gamma$  = 26.93°

- Indication of triaxial structure of Xe at high energy
- New connection of high-energy heavy-ion physics to low-energy nuclear (structure) physics

![](_page_16_Picture_7.jpeg)

### ρ<sub>3</sub> in Pb-Pb and Xe-Xe

![](_page_17_Figure_1.jpeg)

ALI-PREL-494374

ALICE, in preparation Trajectum, PRL126, 202301 (2021) Privation communication v-USPhydro, PRC103 (2021) 2, 024909 JETSCAPE, PRL126, 242301 (2021) Privation communication

Φ<sub>3</sub> in Pb–Pb is compatible with Xe–Xe for the presented centralities, qualitatively predicted by hydrodynamic calculations

 $\bullet \rho_3$  values:

- positive
- have a modest centrality dependence for the presented centralities,
- better described by IP-Glasma,
- TRENTo predicts negative ρ<sub>3</sub>, getting worse for Trajectum and JETSCAPE calculations

 $\bigstar$  model shows that  $\rho_3$  is not sensitive to  $\beta_2$ 

Difference of full IP-Glasma and FSE only, indication of potential contributions from IMA in peripheral?

![](_page_17_Picture_12.jpeg)

![](_page_17_Picture_14.jpeg)

![](_page_17_Picture_15.jpeg)

### Difference in IP-Glasma and TRENTo: potential explanations

Sensitive to the nucleon width parameter (size of nucleon)

- IP-Glasma ~ 0.3; v-USPhydro ~ 0.5; Trajectum~0.7; JETSCAPE (T<sub>R</sub>ENTo) ~ 1.1
- w(IP-Glasma) < w(v-USPhydro) < w(Trajectum) < w(JETSCAPE)</p>

![](_page_18_Figure_4.jpeg)

- Different types of thickness functions
  - T<sub>R</sub>ENTo  $\left(\frac{T_A^p + T_B^p}{2}\right)^{1/p}$  with p≈0  $\sqrt{T_A T_B}$ , IP-Glasma  $T_A T_B$  type

Different contributions from pre-hydrodynamic phase (free streaming) and sub-nucleon structure

**MPI at LH** 

You Zhou (NBI)

UNIVERSITY OF COPENHAGEN

![](_page_18_Picture_9.jpeg)

## Higher-order correlations

The first measurement of higher-order [pT], v2 and v3 correlations
P. Bozek etc, PRC104 (2021) 1, 014905

$$\rho(v_{\rm m}^2, v_{\rm n}^2, [p_{\rm T}]) = \frac{C(v_{\rm m}^2, v_{\rm n}^2, [p_{\rm T}])}{\sqrt{\operatorname{Var}(v_{\rm m}^2)}\sqrt{\operatorname{Var}(v_{\rm n}^2)}\sqrt{c_k}} - \frac{\langle v_{\rm m}^2 \rangle}{\sqrt{\operatorname{Var}(v_{\rm m}^2)}} \cdot \rho_{\rm n} - \frac{\langle v_{\rm n}^2 \rangle}{\sqrt{\operatorname{Var}(v_{\rm n}^2)}} \cdot \rho_{\rm m} - \frac{\langle [p_{\rm T}] \rangle}{\sqrt{\operatorname{Var}(v_{\rm m}^2)}} \cdot \frac{SC(m, n)}{\sqrt{\operatorname{Var}(v_{\rm m}^2)}\sqrt{\operatorname{Var}(v_{\rm m}^2)}}$$

- \* the first  $\rho_{23}$  measurement is non-zero
  - negative for the presented centrality
  - anti-correlations between two flow coefficients and [pT]
- φ<sub>23</sub> from IP-Glasma and v-USPhydro are different for centrality >40%
- Not conclusive on which model works better due to sizeable uncertainties.

![](_page_19_Figure_8.jpeg)

![](_page_19_Picture_9.jpeg)

### More results in smaller colliding systems

![](_page_20_Figure_1.jpeg)

Search for the initial momentum anisotropy (IMA) in smaller colliding systems

- Signature of IMA:
  - once sign change in Pb-Pb and pp collisions
  - twice sign changes in O-O collisions
  - New possibility to probe IMA at LHC-Run3

![](_page_20_Picture_8.jpeg)

![](_page_20_Picture_9.jpeg)

## Summary

#### Characterizing the initial conditions in heavy-ion collisions

#### ☆ Initial geometry:

- The "standard" flow analyses give the access to the  $P(\varepsilon_n, \varepsilon_m, \varepsilon_k, ...)$  from the initial conditions
- For the vn and [pT] correlation, for first time we see completely different behaviours using IP-Glasma and TRENTo initial state models
  - Sensitivities to nucleon width, thickness function, number of constituent quarks...

#### ☆ Initial momentum anisotropy:

- The observed differences from different models are not originated from initial momentum anisotropy (IMA)
- Potential signal for  $\rho_3$  in peripheral collisions and  $\rho_n$  in small systems, not yet conclusive in experiments.

#### Nucleon structure

• results in Xe-Xe collisions (and also in U-U and isobar runs @ RHIC) open a new window to constrain deformation parameter and explore the triaxial structure of nucleon.

You Zhou (NBI)

Thanks for your attention!

![](_page_21_Picture_12.jpeg)

# Backup

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

# Generic algorithm (2021)

}

\* 2021, Generic algorithm method, the most efficient, precise and reliable method

#### arXiv: 2005.07974

#### PHYSICAL REVIEW C 103, 024913 (2021)

Generic algorithm for multiparticle cumulants of azimuthal correlations in high energy nucleus collisions

> Zuzana Moravcova, Kristjan Gulbrandsen, and You Zhou <sup>†</sup> Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark

(Received 23 November 2020; accepted 11 February 2021; published 26 February 2021)

# • Few lines of code, for **any** multi-particle correlations

• Much faster than generic framework (much shorter CPU times)

```
complex Correlator(int* harmonic, int n, int mult = 1, int skip = 0)
{
   int har_sum = 0;
  for (int i = 0; i<mult; ++i) har_sum += harmonic[n-1+i];</pre>
   complex c(Q(har_sum, mult));
   if (n == 1) return c;
   c *= Correlator(harmonic, n-1);
   if (n == 1+skip) return c;
   complex c2 = 0;
   int h_hold = harmonic[n-2];
  for (int counter = 0; counter <= n-2-skip; ++counter)
   ł
    harmonic[n-2] = harmonic[counter];
    harmonic[counter] = h_hold;
     c2 += Correlator(harmonic, n-1, mult+1, n-2-counter);
     harmonic[counter] = harmonic[n-2];
  }
  harmonic[n-2] = h_hold;
  return c-mult*c2;
```

Feel free to contact <u>you.zhou@cern.ch</u> if you have any technical question

![](_page_23_Picture_11.jpeg)

![](_page_23_Picture_13.jpeg)

#### Jiangyong Jia, J.Phys.G 41 (2014) 12

12<sup>th</sup> MPI at LHC

|                       | pdfs                             | cumulants                                                                                                                                                                                                                                                                                               |
|-----------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | $p(v_n)$                         | $v_n\{2k\}, \ k = 1, 2, \dots$                                                                                                                                                                                                                                                                          |
|                       | $p(v_n, v_m)$                    | $\langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle, \ n \neq m$                                                                                                                                                                                                                 |
| Flow-<br>amplitudes   | $p(v_n, v_m, v_l)$               | $ \begin{array}{c} \langle v_n^2 v_m^2 v_l^2 \rangle + 2 \langle v_n^2 \rangle \langle v_m^2 \rangle \langle v_l^2 \rangle - \\ \langle v_n^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_m^2 v_l^2 \rangle \langle v_n^2 \rangle - \langle v_l^2 v_n^2 \rangle \langle v_m^2 \rangle \end{array} $ |
|                       |                                  | n  eq m  eq l                                                                                                                                                                                                                                                                                           |
|                       |                                  | •••                                                                                                                                                                                                                                                                                                     |
|                       |                                  | Obtained recursively as above                                                                                                                                                                                                                                                                           |
| EP-<br>correlation    | $p(\Phi_n, \Phi_m,)$             | $ \begin{array}{l} \langle v_n^{ c_n } v_m^{ c_m } \cos(c_n n \Phi_n + c_m m \Phi_m +) \rangle \\ \sum_k k c_k = 0 \end{array} $                                                                                                                                                                        |
| Mixed-<br>correlation | $p(v_l, \Phi_n, \Phi_m, \ldots)$ | $ \begin{array}{l} \langle v_l^2 v_n^{ c_n } v_m^{ c_m } \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle - \\ \langle v_l^2 \rangle \langle v_n^{ c_n } v_m^{ c_m } \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle \\ \sum_k k c_k = 0, \ n \neq m \neq l \dots \end{array} $          |

![](_page_24_Picture_2.jpeg)

![](_page_24_Picture_3.jpeg)

# $\Psi_n$ fluctuations $P(\Psi_n)$

![](_page_25_Figure_1.jpeg)

- Breakdown of factorization more pronounced in central collisions.
- Hydrodynamic reproduce the factorization broken

COPENHAGEN

- Indication of  $p_{\mathsf{T}}$  dependent flow angle (and magnitude) fluctuations

You Zhou (NBI)

Using novel multi-particle correlations, both flow-angle and flow magnitude fluctuations are observed in experiments (see backup for more details)

MPI at LH

# $P(v_n) \rightarrow P(\varepsilon_n)$

#### ATLAS, JHEP11, 183 (2013)

#### Elliptic-power function: $P(v_2/(v_2))$ , $P(\varepsilon_2/(\varepsilon_2))$ $P(v_2) = \frac{\mathrm{d}\varepsilon_2}{\mathrm{d}v_2} P(\varepsilon_2) = \frac{1}{k_2} P\left(\frac{v_2}{k_2}\right) = \frac{2\alpha v_2}{\pi k_2^2} \left(1 - \varepsilon_0^2\right)^{\alpha + 1/2} \int_0^\pi \frac{(1 - v_2^2/k_2^2)^{\alpha - 1}}{(1 - v_2\varepsilon_0 \cos\varphi/k_2)^{2\alpha + 1}} \mathrm{d}\varphi$ $c_2\{2\} = k_2^2 (1 - f_1),$ $c_2\{4\} = -k_2^4 \left(1 - 2f_1 + 2f_1^2 - f_2\right),$ $c_{2}{6} = k_{2}^{6} (4 + 18 f_{1}^{2} - 12 f_{1}^{3} + 12 f_{1} (3 f_{2} - 1) - 6 f_{2} - f_{3}),$ $c_2\{8\} = -k_2^8 \left(33 - 288 f_1^3 + 144 f_1^4 - 66 f_2 + 18 f_2^2 - 24 f_1^2 (-11 + 6 f_2)\right)$ $^{2}(v_{3}/(v_{3})), P(e_{3}/(e_{3}))$ $-12 f_3 + 4 f_1(-33 + 42 f_2 + 4 f_3) - f_4)$ $f_k \equiv \langle (1 - \varepsilon_n^2)^k \rangle = \frac{\alpha}{\alpha + k} (1 - \varepsilon_0^2)^k {}_2F_1\left(k + \frac{1}{2}, k; \alpha + k + 1, \varepsilon_0^2\right)$ 0.01 $P(v_4/\langle v_4 \rangle), P(\varepsilon_4/\langle \varepsilon_4 \rangle)$ $P(v_2)^* \langle v_2 \rangle$ 45-50% Pb-Pb 5.02 TeV IP-Glasma + MUSIC Pb-Pb 2.76 TeV, |η|<2.5 AMPT-IC + iEBE-VISHNU ATLAS: 0.5<p<sub>1</sub><1 GeV/c</p> $10^{-3}$ ATLAS: p\_>0.5 GeV/c TRENTo-IC + iEBE-VISHNU 0.5 1 1.5 2 2.5 0.5 1.5 2 2.5 $v_2 / \langle v_2 \rangle$ $v_2 / \langle v_2 \rangle$

![](_page_26_Picture_3.jpeg)

MPI at LH

UNIVERSITY OF COPENHAGEN

![](_page_26_Picture_6.jpeg)