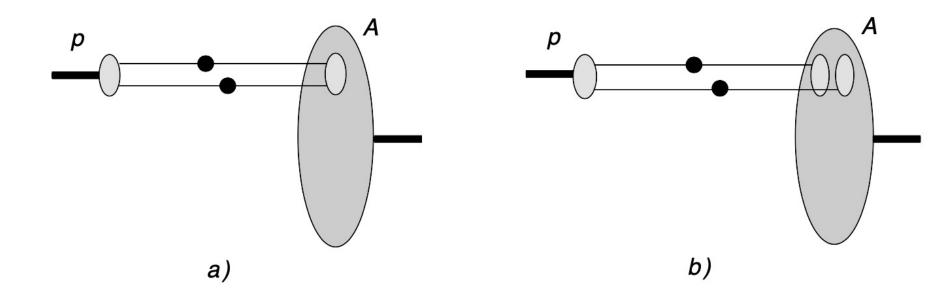
DPS in pA collisions at LHC:how they can be observed?

B.Blok (Technion)


Based on

B.Blok,, F.A. Ceccopieri Eur. Phys. J.C 80 (2020) 3, 278;

Eur.Phys.J.C 80 (2020) 8, 762; Phys.Rev.D 101 (2020) 9, 0940;

M.Alvioli, M.Azarkin.B. Blok, M.Strikman *Eur.Phys.J.C* 79 (2019) 6, 482

MPI@LHC 2021 11-15 October 2021

DPS in pA where first studied in Strikman, Treleani 2002

Basic observation: there is DPS1-diagram a) like DPS in pp, but there is also diagram b) called DPS2 sometimes-two nucleons at the same impact parameter. The latter process is enhanced by factor $A^{1/3}$ realistic estimate shows for A=200 the ratio of pA and pp DPS cross sections is approximately 3.

QCD correctons were considered in Blok, Strikman, Wiedemann (2013)

$$\begin{split} R_{pA}^{4jet}(x_{1}, x_{2}, x_{1}', x_{2}') &\equiv \left. \frac{d\sigma_{4jet}^{pA}(x_{1}, x_{2}, x_{1}', x_{2}')}{d\hat{t}_{1} d\hat{t}_{2}} \right/ \frac{A}{S} \frac{d\sigma_{2jet}(x_{1}', x_{1})}{d\hat{t}_{1}} \frac{d\sigma_{2jet}(x_{2}', x_{2})}{d\hat{t}_{2}} \\ &= 1 + \frac{S}{A} \frac{A - 1}{A} \int T^{2}(b) d^{2}b \frac{G_{p}(x_{1}', x_{2}')}{f_{p}(x_{1}') f_{p}(x_{2}')}, \\ R_{pA}^{4jet}(x_{1}, x_{2}, x_{1}', x_{2}') &= 1 + S W(A) K(x_{1}', x_{2}') \\ SW(A) \sim 2.1 \qquad S=15 \text{ mb}, A=200 \\ K(x_{1}', x_{2}') &= \frac{G_{p}(x_{1}', x_{2}', 0)}{f_{p}(x_{1}') f_{p}(x_{2}')} \qquad \text{So the DPS in pA may measure longitudinal correlations of partons in the nucleon} \end{split}$$

Question: how to see DPS2? Need to substract Leading twist contribution. Recently for the first time observed by LHCb in D system Phys.Rev.Lett. 125 (2020) 21, 212001

New method developed in Alvioli, Azarkin, Blok, Strikman (2019)

$$\sigma_{\mathrm{p}A}\,=\,A\,rac{\sigma_1\,\sigma_2}{\sigma_{eff}}\,+\,\sigma_1\,\sigma_2\,\int d^2b\,T^2(b)$$

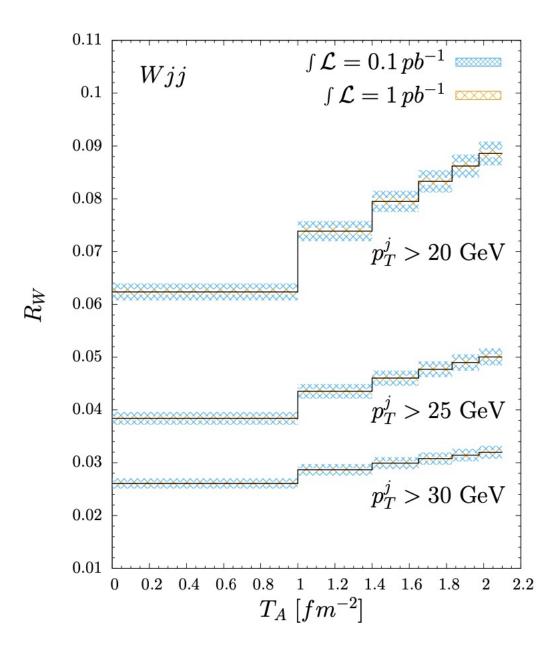
In the b-space
$$rac{d\sigma_{pA}^{
m DPS}}{d^2b} \,=\, \sigma_{pN}\,T_A(b)\,+\,\sigma_1\,\sigma_2\,T^2(b)\,.$$

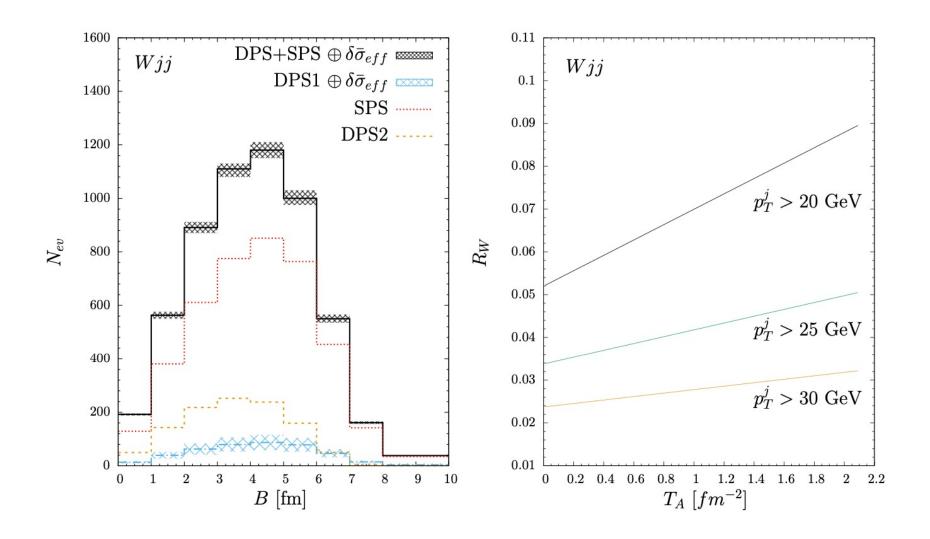
Such different dependences on impact parameter in pA collisions can be used for unambigious extraction of DPS2 from the data on pA scattering eliminating SPS and DPS1 backgrounds. So we can substract SPS background (Leading twist)

Question: can one indeed use this method to extract DPS2, what is the statistics needed for extraction and are there enough DPS2 events in pA collisions in 4 jet and dijet+Z,W processes to be measured in current and future runs? Answer: all these processes can be studied at ATLAS and CMS with already the available data.

Basic formalism: mean field, corrections to mean field in pA are much smaller than in pp (Blok, Strikman, Wiedemann, 2013).

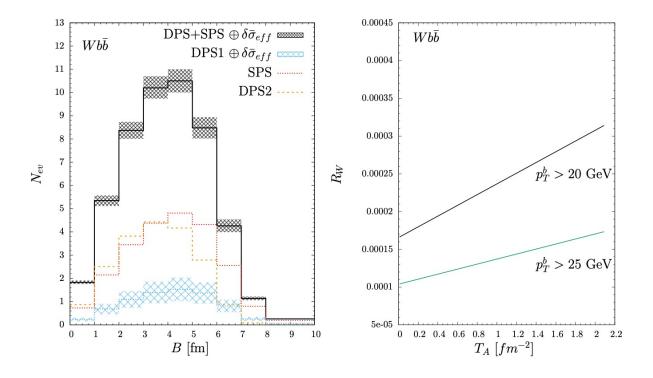
$$\begin{split} \frac{d\sigma_{DPS}^{CD}}{d\Omega_{1}d\Omega_{2}} &= \frac{m}{2} \sum_{i,j,k,l} \sum_{N=p,n} \sigma_{\text{eff}}^{-1} f_{p}^{i}(x_{1}) f_{p}^{j}(x_{2}) f_{N}^{k}(x_{3}) f_{N}^{l}(x_{4}) \frac{d\hat{\sigma}_{ik}^{C}}{d\Omega_{C}} \frac{d\hat{\sigma}_{jl}^{D}}{d\Omega_{D}} \int d^{2}BT_{N}(B), \\ &+ \frac{m}{2} \sum_{i,j,k,l} \sum_{N_{3},N_{4}=p,n} f_{p}^{i}(x_{1}) f_{p}^{j}(x_{2}) f_{N_{3}}^{k}(x_{3}) f_{N_{4}}^{l}(x_{4}) \frac{d\hat{\sigma}_{ik}^{C}}{d\Omega_{C}} \frac{d\hat{\sigma}_{jl}^{D}}{d\Omega_{D}} \int d^{2}BT_{N_{3}}(B) T_{N_{4}}(B) \\ \rho^{(p,n)}(r) &= \frac{\rho_{0}^{(p,n)}}{1 + e^{(r-R_{0}^{(p,n)})/a_{(p,n)}}} \qquad T_{p,n}(B) = \int dz \rho^{(p,n)}(B,z) \\ \sigma_{eff}^{ATLAS} &= 15 \pm 3 \,(\text{stat.})^{+5}_{-3} \,(\text{syst.}) \,\text{mb} \,, \\ \sigma_{eff}^{CMS} &= 20.7 \pm 0.8 \,(\text{stat.}) \pm 6.6 \,(\text{syst.}) \,\text{mb} \,. \end{split}$$

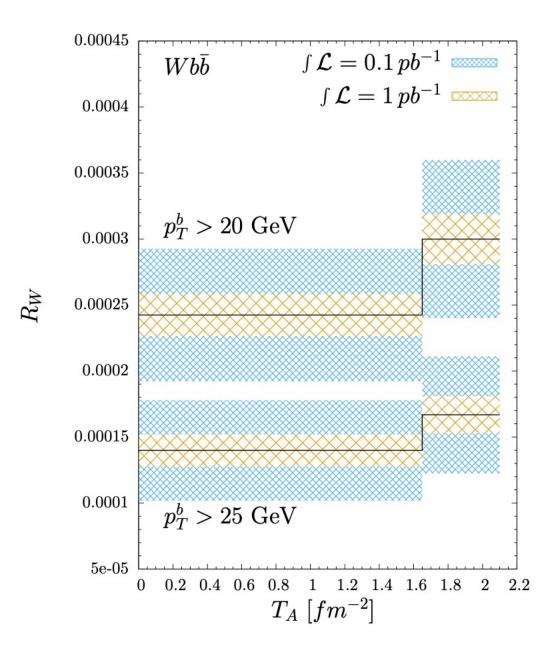

The nuclear pdfs include shadowing corrections


Example 1:Wjj process

 $R_W(T) = N_{Wjj}(T)/N_W(T).$

Basic idea: to eliminate inaccuracies we take the ratio of the number of Wjj events and the number of W events, proportional to T(B).


	$p_T^j > 20~{ m GeV}$	$p_T^j > 25~{\rm GeV}$	$p_T^j > 30~{\rm GeV}$
σ^{Wjj}	[nb]	[nb]	[nb]
DPS1	19 ± 6	8 ± 3	4 ± 2
DPS2	49	22	11
\mathbf{SPS}	81	57	41
Tot	149 ± 6	87 ± 3	56 ± 2



	$p_T^b > 20 { m ~GeV}$	$p_T^b > 25 { m ~GeV}$	$p_T^b > 30 { m ~GeV}$
$\sigma^{Wbar{b}}$	[pb]	[pb]	[pb]
DPS1	74 ± 25	35 ± 12	18 ± 6
DPS2	196	92	48
SPS	234	158	114
Tot	504 ± 25	285 ± 12	180 ± 6

Similar results for W+ two b-jets.

Z+dijet

			1 (DDC (1))	0 (1)			
Zjj	DPS1 (pb)	DPS2 (pb)	SPS (pb)	Sum (pb)	$\sigma(Zjj)/\sigma(Z)$	<i>fdps</i> 1	f _{DPS2}
$p_T^{j_1, j_2} > 20, 20 \text{ GeV}$	2971	7814	15,940	26,725	0.166	0.111	0.292
$p_T^{j_1, j_2} > 25, 25 \text{ GeV}$	1270	3341	11,024	15,636	0.097	0.081	0.213
$p_T^{j_1, j_2} > 30, 30 \text{ GeV}$	621	1632	8030	10,283	0.064	0.060	0.158
$\begin{bmatrix} 10^{4} & & & \\ & Zj \\ & 10^{3} & & p_{T}^{j_{1}} \\ & 10^{2} & & \\ & 10^{2} & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & &$	j $j_{j_2} > 30 \text{ GeV}$	Sum SPS DPS2 DPS1	N _{ev}	$Z_{220} \qquad Z_{jj} \qquad Z_{jj} \qquad \int \mathcal{L} dt = 0.1$		Sum — SPS DPS2 DPS1 —	

 10^{-2}

 10^{-3}

0 1

 $\stackrel{5}{B}$ [fm]

7

8

6

9 10

3 4

 $\mathbf{2}$

40

20

0 È

0

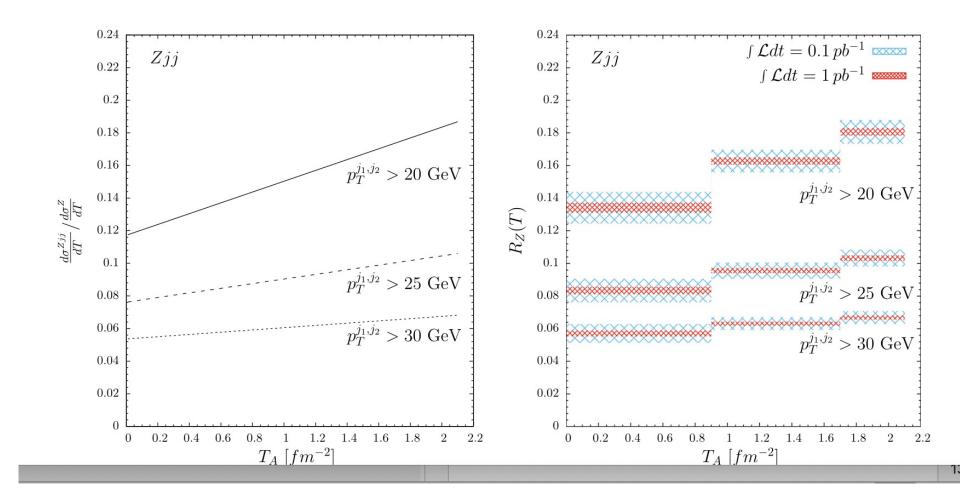
1

2

 $\stackrel{5}{B}$ [fm]

7

6


9

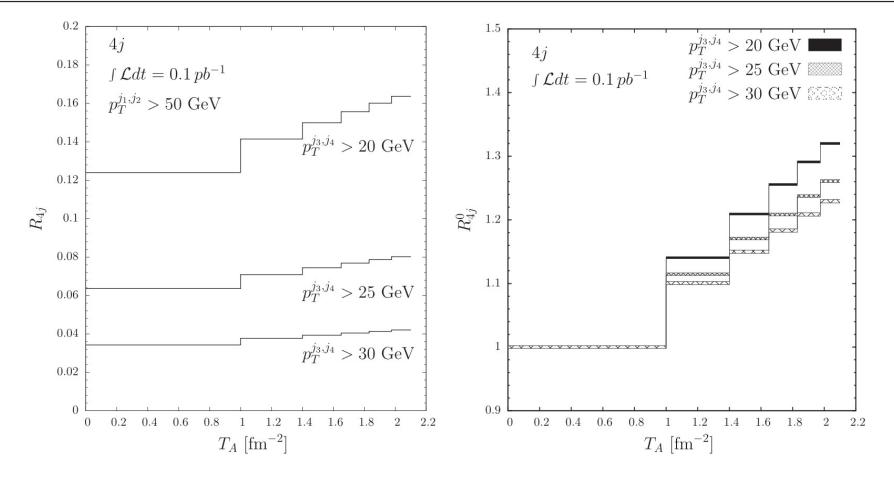
8

10

4

3

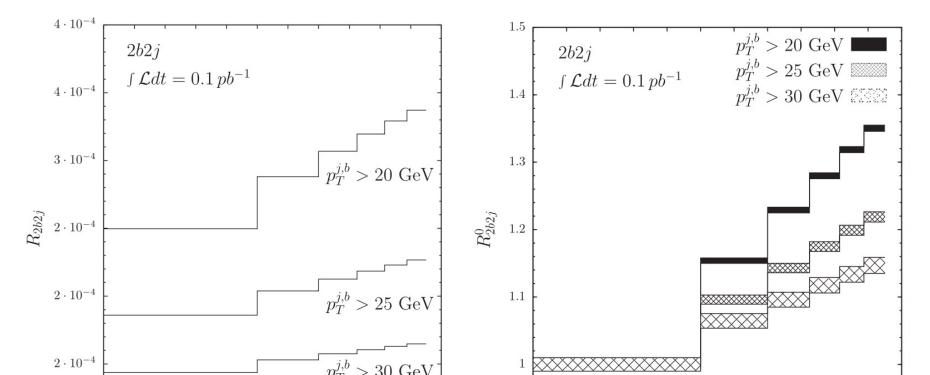
Two dijets


$$\begin{split} N_{ev}(T_i, T_{i+1}) &= \int d^2 B \, \frac{d^2 \sigma_{pA}}{d^2 B} \Theta(T_A(P) - T_i) \\ &\times \Theta(T_{i+1} - T_A(B)), \quad R^0_{4j}(T_i, T_{i+1}) = \frac{N_{4j}(T_i, T_{i+1})}{N_{2j}(T_i, T_{i+1})} \left(\frac{N_{4j}(T_0, T_1)}{N_{2j}(T_0, T_1)}\right)^{-1}; \end{split}$$

 $R_{4j}(T_i, T_{i+1}) = N_{4j}(T_i, T_{i+1}) / N_{2j}(T_i, I_{i+1})$

The double ratio to decrease sensitivity to higher order corrections

	DPS1	DPS2	SPS	Sum	$\sigma(4j)/\sigma(2j)$	f_{DPS1}	f_{DPS2}
4 <i>j</i>	(µb)	(µb)	(µb)	(µb)			
$p_T^{j_3, j_4} > 20 \text{ GeV}$	26.0	72.2	170.9	269.2	0.15	0.13	0.27
$p_T^{j_3, j_4} > 25 \text{ GeV}$	10.8	30.2	92.9	133.9	0.07	0.10	0.22
$p_T^{j_3, j_4} > 30 \text{ GeV}$	5.1	14.3	51.4	70.9	0.04	0.09	0.20


TABLE II. Predictions for 4j DPS and SPS cross sections in pA collisions in fiducial phase space, for different cuts on jets transverse momenta.

2j2b

TABLE III. Predictions for 2b2j DPS and SPS cross sections in *pA* collisions in fiducial phase space for different cuts on jets transverse momenta.

	DPS1	DPS2	SPS	Sum	$\sigma(2b2j)/\sigma(2j)$	f_{DPS1}	f_{DPS2}
2 <i>b</i> 2 <i>j</i>	(µb)	(µb)	(µb)	(µb)	×10 ⁻⁴		
$p_T^{b,j} > 20 \text{ GeV}$	2.2	6.2	13.0	21.4	3.0	0.15	0.29
$p_T^{b,j} > 25 \text{ GeV}$	0.4	1.2	4.7	6.4	2.1	0.09	0.19
$p_T^{b,j} > 30 \text{ GeV}$	0.1	0.3	1.9	2.3	1.6	0.06	0.13

Conclusions

- There is enough statistics to see DPS2 in pA already with available data
- Additional work in particular calculation of NLO and NNLO corrections must be done to extract the longitudinal correlations due to large K factors in some channels.