double parton scattering 12th MPI at LHC LIP Lisbon, Portugal

Albert Frithjof Bursche South China Normal University on behalf of the LHCb Collaboration

10th October 2021

Experimental Setup

Analysis

ť

double parton scattering in proton proton collisions

Albert Bursche

protons

protons

ADNAMNAENAEN E OOG

		2.40
charming DPS	$10^{th} \ October \ 2021$	5/17

$$\sigma_{AB} = \frac{m}{2} \sum_{i,j,k,l} \int dt dx_1 dx_2 dx_1' dx_2' d^2 b \Gamma_{i,j}(x_1, x_2, b, t_1, t_2) \Gamma_{k,l}(x_1', x_2', b, t_1, t_2) \hat{\sigma}_{ik}(x_1, x_1') \hat{\sigma}_{jl}(x_2, x_2')$$

assumptions and approximations

Formulas from J.R. Gaunt, C-H. Kom, A. Kulesza, W. J. Stirling arXiv:1003.3953, Eur.Phys.J.C 69 (2010) 53-68 Albert Bursche charming DPS

$$\sigma_{AB} = \frac{m}{2} \sum_{i,j,k,l} \int dt dx_1 dx_2 dx_1' dx_2' d^2 b \Gamma_{i,j}(x_1, x_2, b, t_1, t_2) \Gamma_{k,l}(x_1', x_2', b, t_1, t_2) \hat{\sigma}_{ik}(x_1, x_1') \hat{\sigma}_{jl}(x_2, x_2')$$

assumptions and approximations

• double pdf dependency on impact parameter factorizes $\Gamma_{i,j}(x_1, x_2, b, t_1, t_2) = D_p^{ij}(x_1, x_2, t_1, t_2)F_i^j(b)$ allows to define $\sigma_{\text{eff}}^{-1} = \int d^2 b F_i^j(b)$

Formulas from J.R. Gaunt, C-H. Kom, A. Kulesza, W. J. Stirling arxiv:1003.3953, Eur.Phys.J.C 69 (2010) 53-68 charming DPS

Albert Bursche

$$\sigma_{AB} = \frac{m}{2\sigma_{\text{eff}}} \sum_{i,j,k,l} \int dt \, dx_1 \, dx_2 \, dx_1' \, dx_2' \, D_p^{ij}(x_1, x_2, t_1, t_2) D_p^{kl}(x_1', x_2', t_1, t_2) \hat{\sigma}_{ik}(x_1, x_1') \hat{\sigma}_{jl}(x_2, x_2')$$

assumptions and approximations

- double pdf dependency on impact parameter factorizes $\Gamma_{i,j}(x_1, x_2, b, t_1, t_2) = D_p^{ij}(x_1, x_2, t_1, t_2)F_i^j(b)$ allows to define $\sigma_{\text{eff}}^{-1} = \int d^2 bF_i^j(b)$
- factorisation of the parton properties $t_1 = t_2 = t$ and $D_h^{i,j} = D^i D^j$ allows the integral to be calculated and yields full factorisation

$$\sigma_{AB} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{\text{eff}}} \quad \Rightarrow \sigma_{\text{eff}} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{AB}}$$

Formulas from J.R. Gaunt, C-H. Kom, A. Kulesza, W. J. Stirling arxiv:1003.3953, Eur.Phys.J.C 69 (2010) 53-68

Albert Bursche

$$\sigma_{AB} = \frac{m}{2\sigma_{\text{eff}}} \sum_{i,j,k,l} \int dt dx_1 dx_2 dx_1' dx_2' D_{\rho}^i(x_1,t) D_{\rho}^j(x_2,t) D_{\rho}^k(x_1',t) D_{\rho}^l(x_2',t) \hat{\sigma}_{ik}(x_1,x_1') \hat{\sigma}_{jl}(x_2,x_2')$$

assumptions and approximations

- double pdf dependency on impact parameter factorizes $\Gamma_{i,j}(x_1, x_2, b, t_1, t_2) = D_p^{ij}(x_1, x_2, t_1, t_2)F_i^j(b)$ allows to define $\sigma_{\text{eff}}^{-1} = \int d^2 bF_i^j(b)$
- factorisation of the parton properties $t_1 = t_2 = t$ and $D_h^{i,j} = D^i D^j$ allows the integral to be calculated and yields full factorisation

$$\sigma_{AB} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{\text{eff}}} \quad \Rightarrow \sigma_{\text{eff}} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{AB}}$$

Formulas from J.R. Gaunt, C-H. Kom, A. Kulesza, W. J. Stirling arXiv:1003.3953, Eur.Phys.J.C 69 (2010) 53-68

Albert Bursche

$$\sigma_{AB} = \frac{m}{2\sigma_{\text{eff}}} \sum_{i,k} \int \mathrm{d} t \, \mathrm{d} x_1 \, \mathrm{d} x_1' \, D_p^i(x_1,t) D_p^k(x_1',t) \hat{\sigma}_{ik}(x_1,x_1') \sum_{j,l'} \int \mathrm{d} x_2 \, \mathrm{d} x_2' D_p^j(x_2,t) D_p^l(x_2',t) \hat{\sigma}_{jl}(x_2,x_2') D_p^l(x_2',t) \hat{\sigma}_{jl}(x_2',t) \hat{\sigma}_{j$$

assumptions and approximations

- double pdf dependency on impact parameter factorizes $\Gamma_{i,j}(x_1, x_2, b, t_1, t_2) = D_{\rho}^{ij}(x_1, x_2, t_1, t_2)F_i^j(b)$ allows to define $\sigma_{\text{eff}}^{-1} = \int d^2 bF_i^j(b)$
- factorisation of the parton properties $t_1 = t_2 = t$ and $D_h^{i,j} = D^i D^j$ allows the integral to be calculated and yields full factorisation

$$\sigma_{AB} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{\text{eff}}} \quad \Rightarrow \sigma_{\text{eff}} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{AB}}$$

Formulas from J.R. Gaunt, C-H. Kom, A. Kulesza, W. J. Stirling arxiv:1003.3953, Eur.Phys.J.C 69 (2010) 53-68

Albert Bursche

6/17

effective cross section

a surprisingly simple model approximately holds over a large variety of processes and energies

Albert Bursche

7/17

Morad Aaboud et al. "Measurement of the prompt J/ ψ pair production cross-section in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector". In: *Eur. Phys. J. C* 77.2 (2017), p. 76. DOI: 10.1140/epjc/s10052-017-4644-9. arXiv: 1812.02950 [hep-ex].

- [2] Roal Aaiji et al. "Measurement of the J/ψ pair production cross-section in pp collisions at √s = 13 TeV". In: JHEP 06 (2017), [Erratum: JHEP 10, 068 (2017)], p. 047. DOI: 10.1007/JHEP06(2017)047. arXiv: 1612.07451 [bep-va].
- [3] Roal Aaij et al. "Observation of double charm production involving open charm in pp collisions at √5 = 7 TeV". In: JHEP 06 (2012). [Addendum: JHEP 03.108 (2014)]. p. 141. DOI: 10.1007/JHEP06(2012)141. arXiv: 1205.0075 [hep-ex].
- [4] Roel Aaij et al. "Production of associated Y and open charm hadrons in pp collisions at \sqrt{s} = 7 and 8 TeV via double parton scattering". In: JHEP 07 (2016), p. 052. DOI: 10.1007/JHEP07(2016)052. arXiv: 1510.05940 [hep-ve].
- [5] Victor Mukhamedovich Abazov et al. "Evidence for simultaneous production of J/ψ and T mesons". In: Phys. Rev. Lett. 116.8 (2016), p. 082002. DOI: 10.1103/PhysRevLett.116.082002. arXiv: 1511.02428 [hep-ex].
- [6] Victor Mukhamedovich Abazov et al. "Observation and Studies of Double J/ψ Production at the Tevatron". In: Phys. Rev. D 90.111 (2014), p. 111101. DOI: 10.1103/PhysRevD.90.111101. arXiv: 1406.2380 (hep-ex].
- [7] F. Abe et al. "Double parton scattering in *p̄p* collisions at √s = 1.8TeV". In: Phys. Rev. D 56 (1997), pp. 3811–3832. DOI: 10.1103/PhysRevD.56.3811.
- [8] Vardan Khachatryan et al. "Measurement of Prompt J/ψ Pair Production in pp Collisions at √s = 7 Tev". In: JHEP 09 (2014), p. 094. DOI: 10.1007/JHEP09(2014)094. arXiv: 1406.0484 [hep-ex].
- [9] Jean-Philippe Lansberg and Hua-Sheng Shao. "J/ψ -pair production at large momenta: Indications for double parton scatterings and large a⁴/₂ contributions". In: Phys. Lett. B 751 (2015), pp. 479–486. DOI: 10.1016/j.physletb.2015.10.083. arXiv: 1410.8822 [hep-ph].

The hatched area shows the reference value [7] of $\sigma_{eff}=14.5\pm1.7^{+1.7}_{-2.3}~\rm{mb}$ measured in multi-jet events at the Tevatron.

Albert Bursche

charming DPS

double J/ ψ production - mass

JHEP 1706 (2017) 047

- 4 回 ト 4 ヨ ト 4 ヨ ト

double J/ ψ production - mass

JHEP 1706 (2017) 047

Albert Bursche

10th October 2021

- 4 回 ト 4 ヨ ト 4 ヨ ト

double J/ψ production - results

- doth SPS and DPS contribute to measured double J/ψ cross section
- fit DPS fraction

JHEP 1706 (2017) 047

double parton scattering fraction - fits

Albert Bursche

charming DPS

double parton scattering fraction - fit results

Variable	LOCS	$LO k_T$	$\rm NLO^* CS'$	$\rm NLO^*CS''$		NLO CE	
				$\langle k_{\rm T} \rangle = 2 {\rm GeV} / c$	$\langle k_{\rm T} \rangle = 0.5{\rm GeV}/c$	NLOUS	
no $p_{\mathrm{T}}(J/\psiJ/\psi)$ cut							
$p_{\mathrm{T}}(J/\psi J/\psi)$		78 ± 2		86 ± 55	81 ± 7		
$y(J\!/\psiJ\!/\psi)$	83 ± 39			75 ± 37	68 ± 34		
$m(J\!/\!\psiJ\!/\!\psi)$	76 ± 7	74 ± 7	_	78 ± 7		77 ± 7	
$ \Delta y $	59 ± 21	61 ± 18		63 ± 18	61 ± 18	69 ± 16	
$p_{\mathrm{T}}(J/\psiJ/\psi) > 1\mathrm{GeV}/c$							
$y(J/\psi J/\psi)$	_		75 ± 24	71 ± 38	68 ± 34	_	
$m(J\!/\!\psiJ\!/\!\psi)$		73 ± 8	76 ± 7	88 ± 1			
$ \Delta y $		57 ± 20	59 ± 19	60 ± 18	60 ± 19		
$p_{ m T}(J\!/\!\psiJ\!/\!\psi)>3{ m GeV}/c$							
$y(J/\psi J/\psi)$	_	_	77 ± 18	64 ± 38	64 ± 35	_	
$m(J\!/\!\psiJ\!/\!\psi)$		76 ± 10	84 ± 7	87 ± 2			
$ \Delta y $		42 ± 25	53 ± 21	53 ± 21	53 ± 21		

- $\sigma_{J/\psi J/\psi} = 15.2 \pm 1.0 \pm 0.9 \text{ nb}$ • $\frac{1}{2} \frac{\sigma_{J/\psi}^2}{\sigma_{J/\psi J/\psi}} = 7.3 \pm 0.5 \pm 1.0 \text{ mb}$
- Determination of the DPS fraction introduces large model dependence
- Assumptions on the J/ψ polarisation affect the acceptance $(\lambda_{\theta} \pm 20 \Rightarrow a \pm 7\%)$

 $10^{th} October 2021$

イロト 不得 トイヨト イヨト 二日

12/17

LHCb Results from Proton Lead Collisions

Proton Ion Collision

LHCb Results from Proton

• CM frame Rapidity ± 0.465 in Lab Frame

Proton Ion Collisions

double open charm in proton ion collisions

double charm production in proton lead collisions

- select pairs of D^0 , \overline{D}^0 , D^+ , D^- , D_s^+ , $D_s^$ and J/ψ
- sort them into pair production and "DPS" $\sigma_{C_1, C_2} = \alpha \frac{\sigma_{C_1} \sigma_{C_2}}{\sigma_{\text{eff}}}$ categories

$$\begin{aligned} R_{forward}^{D_1 D_2} &= \frac{\sigma_{D_1 D_2}}{\sigma_{D_1 \bar{D}_2}} = 0.308 \pm 0.015 \pm 0.010 \\ R_{backward}^{D_1 D_2} &= 0.391 \pm 0.019 \pm 0.025 \\ R_{pp}^{D^0 D^0} &= 0.109 \pm 0.008 \end{aligned}$$

Like sign charm fraction tripled!

 $\sqrt{s_{\rm NN}} = 8.2 {
m TeV}$ Phys. Rev. Lett. 125 (2020) 212001 Albert Bursche charming DPS

15/17

- keep one state identical in nominator and denominator
- fragmentation similar to proton collisions

charming DPS

16/17

conclusion

- LHCb keeps producing double production results
- Theory uncertainties affect the precision of the measurements
- Large enhancement of like sign open charm in proton lead collisions

イロト 不得下 イヨト イヨト