

Observation of triple-J/Ψ production in p-p collisions at the LHC

Lisbon, 12th October 2021 David d'Enterria (on behalf of the CMS Collaboration) CERN

MPI-2021

Details: CMS-PAS-BPH-21-004

N-parton scatterings in p-p collisions

- Motivation for studies of multiple production of hard/heavy particles:
 - (1) Generalized PDFs (x,Q²,b) of the proton, in particular unknown energy evolution of transverse proton profile.
 - (2) Role of partonic correlations (in space, p, x, flavour, colour, spin,...) in hadronic wave functions.
 - (3) Backgrounds for rare (B)SM resonance decays w/ multiple heavy particles
- Studies so far focused on double-parton scatterings (DPS):

 $\sigma_{\text{DPS}}^{\text{pp} \to \psi_1 \psi_2 + X} = \left(\frac{m}{2}\right) \frac{\sigma_{\text{SPS}}^{\text{pp} \to \psi_1 + X} \sigma_{\text{SPS}}^{\text{pp} \to \psi_2 + X}}{\sigma_{\text{eff},\text{DPS}}} \qquad \text{"Pocket formula":}$

Assuming no parton correlations: σ_{DPS} is proportional to SPS x-sections normalized by effective x-section (σ_{eff} , proxy to mean inter-parton transverse separation squared) derivable from p-p transverse overlap:

- $\sigma_{\text{eff}} \sim 20-30$ mb expected from PYTHIA8/HERWIG proton form factors.
- $\sigma_{eff} \sim 15$ mb, derived from DPS of jets, photons, EWK bosons
- $\sigma_{eff} \sim 5 \text{ mb}$, derived from di-quarkonia final states
- Reasons: Correlations? x- & q,g-dependent transverse proton profile?

Can triple-parton scatterings (TPS), unobserved so far, help to clarify this?

Triple parton scattering cross sections

Assuming that the probabilities for 3 hard collisions are independent of each other, one can write a pocket-formula for TPS x-section:

$$\sigma_{hh' \to a_1 a_2 a_3}^{\rm TPS} = \left(\frac{m}{3!}\right) \frac{\sigma_{hh' \to a_1}^{\rm SPS} \cdot \sigma_{hh' \to a_2}^{\rm SPS} \cdot \sigma_{hh' \to a_3}^{\rm SPS}}{\sigma_{\rm eff, TPS}^2}$$

$$p$$
 x_1^{0} x_2^{0} x_2^{0} x_3^{0} x_2^{0} x_3^{0} x_2^{0} x_3^{0} x_2^{0} x_3^{0} x_3^{0} x_4^{0} x_5^{0} x_5^{0}

normalized by the square of an eff. x-section ($\sigma^2_{eff,TPS}$) plus a trivial combinatorial factor (m/3!) to avoid triple-counting in case of same particles produced: m = 1 if $a_1 = a_2 = a_3$; m = 3 if $a_1 = a_2$, or $a_1 = a_3$, or $a_2 = a_3$; and m = 6 if $a_1 \neq a_2 \neq a_3$.

- How to interpret $\sigma_{\rm eff,TPS}$? Relationship to $\sigma_{\rm eff,DPS}$?
- Most generic expression for TPS cross section:

$$\sigma_{hh' \to a_{1}a_{2}a_{3}}^{\text{TPS}} = \left(\frac{m}{3!}\right) \sum_{i,j,k,l,m,n} \int \Gamma_{h}^{ijk} x_{1}, x_{2}, x_{3}; \mathbf{b_{1}}, \mathbf{b_{2}}, \mathbf{b_{3}}; Q_{1}^{2}, Q_{2}^{2}, Q_{3}^{2}) \\ \times \hat{\sigma}_{a_{1}}^{il} (x_{1}, x_{1}', Q_{1}^{2}) \quad \hat{\sigma}_{a_{2}}^{jm} (x_{2}, x_{2}', Q_{2}^{2}) \cdot \hat{\sigma}_{a_{3}}^{kn} (x_{3}, x_{3}', Q_{3}^{2}) \\ \times \hat{\sigma}_{h'}^{lmn} (x_{1}', x_{2}', x_{3}'; \mathbf{b_{1}} - \mathbf{b}, \mathbf{b_{2}} - \mathbf{b}, \mathbf{b_{3}} - \mathbf{b}; Q_{1}^{2}, Q_{2}^{2}, Q_{3}^{2}) \\ \times dx_{1}dx_{2}dx_{3}dx_{1}' dx_{2}' dx_{3}' d^{2}b_{1}d^{2}b_{2}d^{2}b_{3}d^{2}b. \qquad \text{[DdE, Snigirev} \\ \text{Generalized PDFs} = f(\mathbf{x}, \mathbf{Q}^{2}, \mathbf{b}) \qquad \text{[DdE, Snigirev} \\ \end{array}$$

MPI-2021, Lisbon, Oct'21

David d'Enterria (CERN)

Effective TPS cross section

Assumption 1: Factorize generalized Triple-PDF into longitudinal & transverse components: $\Gamma_h^{ijk}(x_1, x_2, x_3; \mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}; Q_1^2, Q_2^2, Q_3^2)$

$$= D_h^{ijk} x_1, x_2, x_3; Q_1^2, Q_2^2, Q_3^2) f(\mathbf{b_1}) f(\mathbf{b_2}) f(\mathbf{b_3}),$$

p-p transv. overlap function (mb⁻¹): $T(\mathbf{b}) = \int f(\mathbf{b_1}) f(\mathbf{b_1} - \mathbf{b}) d^2 b_1$, with $\int d^2 b T(\mathbf{b}) = 1$.

<u>Assumption 2</u>: Longitudinal triple-PDF is the product of 3 single PDFs (i.e. no parton correlations in colour, momentum, flavour, spin,...)

$$D_h^{ijk}(x_1, x_2, x_3; Q_1^2, Q_2^2, Q_3^2) = D_h^i(x_1; Q_1^2) D_h^j(x_2; Q_2^2) D_h^k(x_3; Q_3^2)$$

Then, $\sigma^2_{eff,TPS}$ is simply the inverse of the cube of the transv. pp overlap:

$$\sigma_{\rm eff, TPS}^2 = \left[\int d^2 b \, T^3(\mathbf{b})\right]^{-1}$$

(identical result for the effective DPS x-section, with one power less).

Close relationship between $\sigma_{eff,TPS} \& \sigma_{eff}$ found by testing many proton overlaps/profiles (hard sphere, Gaussian, exponential, dipole fit):

$$\sigma_{
m eff,TPS} = k imes \sigma_{
m eff,DPS}, ext{ with } k = 0.82 \pm 0.11$$
 [Dde, Sni PRL 1180

DdE, Snigirev PRL 118(2017)122001]

TPS measurements: Novel NPS probe, independent σ_{eff} extraction.

Triple-J/ψ production in p-p collisions

MPI-2021, Lisbon, Oct'21

David d'Enterria (CERN)

p-p @ 13 TeV: Data selection & reconstruction

- Full Run-2 dataset: p-p collisions at 13 TeV, $\mathcal{L}_{int} = 133 \text{ fb}^{-1}$
- HLT trigger:
 - 3 muons with p_{τ} > 3.5 GeV ($|\eta|$ <1.2), p_{τ} > 2.5 GeV (1.2< $|\eta|$ <2.4).
 - -2 opp.-charge muons with 2.8<m_{inv}<3.35 GeV and common vertex.
- Offline:
 - 6+ muons, opp.-charge dimuons 2.9<m_{inv}<3.3 GeV, shared primary vtx.</p>
 - Dimuon $p_T > 6.5$ GeV and |y| < 2.4
- Data yield: 6 events

CMS Experiment at the LHC, CERN Data recorded: 2017-Oct-18 16:07:04.866439 GMT Run / Event / LS: 305237 / 1277785997 / 682

Triple-J/ ψ signal extraction

- Yield extracted using 3D unbinned extended maximum likelihood fit
 - Signal: Gaussian w/ resolution fixed to MC and mean to PDG J/ ψ mass
 - Background: exponential (polynomials for systematics)

Yield accounting for all combinations of signals & bckgd dimuon pairs: N(3J/ψ,signal) = 5.0^{+2.6}/_{-1.9}, N(backgd) = 1.0^{+1.4}/_{-0.8}

Extended mass region, down to 2.3 GeV: consistent result, no backgd.

 Significance: 6.7 std.dev. (likelihood ratio of bckgd-only/signal+backgd fits) 5.8 std.dev. (Poisson counting exp.) 5.5 std. dev. (MC pseudoexperiments).

Triple-J/ψ cross section & systematics

Fiducial cross section:

 $\sigma(pp \rightarrow 3J/\psi) = N(3J/\psi) / [\epsilon \times \mathcal{L}_{int} \times B^3(J/\psi \rightarrow \mu\mu)] = 272^{+141}_{-104} \text{ (stat) } \pm 17 \text{ (syst) fb}$

- Efficiency: $\varepsilon = \varepsilon_{trig} \times \varepsilon_{id} \times \varepsilon_{reco} = 0.84 \times 0.78$ (from MC simulation, tag & probe)
- $B^{3}_{(J/\psi \to \mu\mu)} = (5.96\% \pm 0.03\%)^{3}$

Systematic uncertainties: ±6.2%

- Signal shape fit: Change Gaussian to Crystal-Ball and to Gaussian w/ free widths.
- Background shape fit: Change exp. to pol0 & pol1
- Muon reconstruction efficiency: Vary tag&probe (p_T,η) correction factors within their uncertainties.
- Trigger efficiency: Change DPS/TPS fraction in MC sample.

Fiducial requirement	:	
For all muons	$p_{\rm T} > 3.5 { m GeV}$ for $ \eta <= 1.2$	
	$p_{ m T}>2.5{ m GeV}$ for $1.2< \eta <2.4$	
For all J/ ψ mesons	$p_{ m T}$ > 6 GeV and $ y $ < 2.4	
	$2.9 < m_{\mu^+\mu^-} < 3.3{ m GeV}$	

Source	Relative uncertainty
J/ ψ meson signal shape	0.8%
Dimuon continuum background shape	3.4%
Muon reconstruction efficiency	1.0%
Trigger efficiency measurement	3.4%
MC sample size	3.0%
Integrated luminosity	1.6%
Branching fraction	1.7%
Total	6.2%

Prompt & non-prompt J/ψ contributions

- **2** approaches to identify prompt & non-prompt J/ψ :
 - 1) Cut on J/ ψ proper decay length distributions at L=60 μ m
 - 2) Fit proper decay length distributions:
 - Fit all individual distributions with prompt and nonprompt templates derived from MC.
 - Unbinned maximum likelihood fit with 2 variables
 - Compare sPlot prompt and nonprompt weights per event.

Same answer from both methods.

- **N**(3J/ ψ) = 5 signal events consistent with:
- 2 events: 2 nonprompt + 1 prompt
- 1 event: 1 nonprompt + 2 prompt
- 1 event: 3 nonprompt
- 1 event: 3 prompt

Triple-J/ψ x-section: SPS, DPS, TPS contributions

The theoretical total triple-J/ψ cross section expected to correspond to the sum of the contributions from SPS, DPS, and TPS processes:

$$\begin{aligned} \sigma_{\text{tot}}^{3J/\psi} &= \sigma_{\text{SPS}}^{3J/\psi} + \sigma_{\text{DPS}}^{3J/\psi} + \sigma_{\text{TPS}}^{3J/\psi} = \\ &= \left(\sigma_{\text{SPS}}^{3\,p} + \sigma_{\text{SPS}}^{2p1np} + \sigma_{\text{SPS}}^{1p2np} + \sigma_{\text{SPS}}^{3\,np}\right) + \\ &+ \left(\sigma_{\text{DPS}}^{3\,p} + \sigma_{\text{DPS}}^{2p1np} + \sigma_{\text{DPS}}^{1p2np} + \sigma_{\text{DPS}}^{3\,np}\right) + \left(\sigma_{\text{TPS}}^{3\,p} + \sigma_{\text{TPS}}^{2p1np} + \sigma_{\text{TPS}}^{3\,np}\right) \end{aligned}$$

In the factorized approach, the DPS and TPS triple-J/ψ cross sections derivable from the single- and double-J/ψ SPS cross sections via:

$$\begin{split} \sigma_{\rm DPS}^{\rm 3J/\psi} = & \frac{m_1 \left(\sigma_{\rm SPS}^{\rm 2p} \sigma_{\rm SPS}^{\rm 1p} + \sigma_{\rm SPS}^{\rm 2p} \sigma_{\rm SPS}^{\rm 1np} + \sigma_{\rm SPS}^{\rm 1p1np} \sigma_{\rm SPS}^{\rm 1np} + \sigma_{\rm SPS}^{\rm 1p1np} \sigma_{\rm SPS}^{\rm 1np} + \sigma_{\rm SPS}^{\rm 2p} \sigma_{\rm SPS}^{\rm 2np} + \sigma_{\rm SPS}^{\rm 2np} + \sigma_{\rm SPS}^{\rm 2n$$

with $m_1=1$, $m_2=1/2$, $m_3=1/6$, and effective DPS & TPS x-sections. ("sum pocket formula")

Triple-J/ψ x-section: SPS, DPS, TPS contributions

Theoretical single-, double-, and triple-J/ψ SPS cross sections from HELACONIA(data-based,LO,NLO*)+PYTHIA8, MG5@NLO+PYTHIA8:

SPS single-J/ ψ production		SPS double-J/ ψ production			SPS triple-J/ ψ production			
HO(DATA)	mg5nlo+py8	HO(NLO*)	HO(LO)+PY8	mg5nlo+py8	HO(LO)	HO(LO)+PY8	HO(LO)+PY8	mg5nlo+py8
$\sigma^{1\mathrm{p}}_{\mathrm{SPS}}$	$\sigma_{ m SPS}^{ m 1np}$	$\sigma^{2p}_{ m SPS}$	$\sigma_{ m SPS}^{ m 1p1np}$	$\sigma^{ m 2np}_{ m SPS}$	$\sigma^{ m 3p}_{ m SPS}$	$\sigma_{ m SPS}^{ m 2p1np}$	$\sigma_{ m SPS}^{ m 1p2np}$	$\sigma_{ m SPS}^{ m 3np}$
$570\pm57\mathrm{nb}$	$600^{+130}_{-220}\mathrm{nb}$	$40^{+80}_{-26}{ m pb}$	$24^{+35}_{-16}{ m fb}$	$430^{+95}_{-130}\mathrm{pb}$	<5 ab	$5.2^{+9.6}_{-3.3}{ m fb}$	$14^{+17}_{-8}{ m ab}$	$12\pm4\mathrm{fb}$

Nonprompt cross sections scaled to NNLO (x1.15). Uncertainties dominated by scale variations, then PDF.

■ Using "sum pocket formula" with $\sigma_{\text{eff,TPS}}$ = (0.82 ± 0.11) $\sigma_{\text{eff,DPS}}$, value of

free $\sigma_{eff,DPS} = 2.7$ mb extracted by requiring $\sigma(pp \rightarrow 3J/\psi)_{th} = \sigma(pp \rightarrow 3J/\psi)_{exp}$

Process:	3 prompt	2 prompt+1 nonprompt	1 prompt+2 nonprompt	3 nonprompt	total
SPS:					
$\sigma_{ m SPS}^{ m 3J/\psi}$ (fb)	${<}510^{-3}$	5.7	0.014	12	18
$N_{\rm SPS}^{3{\rm J}/\psi}$	0.0	0.1	0.0	0.22	0.32
DPS:					
$\sigma_{ m DPS}^{ m 3J/\psi}$ (fb)	8.4	8.9	90	95	202
$N_{\rm DPS}^{3{\rm J}/\psi}$	0.15	0.16	1.7	1.7	3.7
TPS:					
$\sigma_{ m TPS}^{ m 3J/\psi}$ (fb)	6.1	19.4	20.4	7.2	53
$N_{\mathrm{TPS}}^{\mathrm{3J}/\psi}$	0.11	0.36	0.38	0.13	1.0
SPS+DPS+TPS:					
$\sigma_{\rm tot}^{3J/\psi}$ (fb)	15	34	110	114	272
$N_{ m tot}^{3 m J/\psi}$	0.3	0.6	2.0	2.1	5.0

Effective DPS cross section ($\sigma_{eff,DPS}$)

Derived effective DPS cross section:

 $\sigma_{\rm eff,DPS}$ = 2.7 $^{+1.4}_{-1.0}$ (exp) $^{+1.5}_{-1.0}$ (theo) mb

Expected fractions from SPS, DPS, TPS processes amount to:

SPS: 6%, DPS: 74%, TPS: 20%

(triple-J/ψ is a golden channel to study DPS/TPS).

Derived σ_{eff,DPS} consistent with world-data of effective DPS cross sections obtained so far from quarkonium-related DPS measurements at midrapidity:

 $\sigma_{_{eff,DPS}} \approx 3-10 \ mb$

David d'Enterria (CERN)

Effective DPS cross section ($\sigma_{eff,DPS}$)

Derived effective DPS cross section:

 $\sigma_{\rm eff,DPS}$ = 2.7 $^{+1.4}_{-1.0}$ (exp) $^{+1.5}_{-1.0}$ (theo) mb

Expected fractions from SPS, DPS, TPS processes amount to:

SPS: 6%, DPS: 74%, TPS: 20% (triple-J/ψ is a golden channel to study DPS/TPS).

Derived σ_{eff,DPS} much smaller than world-data of effective DPS cross sections obtained using double- jets, γ, W, Z bosons measurements:

 $\sigma_{\rm eff,DPS} \approx 10-20 \ mb$

Differences suggestive of a σ_{eff,DPS} dependence on different transverse density/correlations for gluon- (x~10⁻⁴) or quark- (x~10⁻²) dominated processes MPI-2021, Lisbon, Oct'21

David d'Enterria (CERN)

Summary

- **First** observation of triple J/ψ meson production in pp collisions.
- First experimental study of TPS.
- **First** extraction of $\sigma_{\text{eff},\text{DPS}}$ in non-doubly-produced final states.
- Measurement of fiducial cross section $\sigma(pp \rightarrow 3J/\psi) = 272^{+141}_{-104}$ (stat) ± 17 (syst) fb
- Theoretical interpretation assuming factorized NPS ansatz, based on (N)NLO SPS estimates for single-, double-, triple-J/ψ cross sections:
 - Triple-J/ψ fractions: ~6% SPS, ~74% DPS, ~20% TPS
 - Extraction of $\sigma_{\rm eff,DPS}$ = 2.7 $^{+1.4}_{-1.0}$ (exp) $^{+1.5}_{-1.0}$ (theo) mb
 - Confirmation of lower $\sigma_{eff,DPS} \approx 3 10$ mb values for quarkonia-based wrt. jet/ γ /W/Z DPS studies:
 - q/g x-dependent transverse profile & correlations

MPI-2021, Lisbon, Oct'21

14/14

Backup slides

N-parton scatterings x-sections in p-p colls.

Assuming that the probabilities for N hard collisions to be independent of each other, one can write a generic pocket-formula for NPS x-section:

$$\sigma_{hh' \to a_1 \dots a_n}^{\text{NPS}} = \left(\frac{m}{n!}\right) \frac{\sigma_{hh' \to a_1}^{\text{SPS}} \cdots \sigma_{hh' \to a_n}^{\text{SPS}}}{\sigma_{\text{eff,NPS}}^{n-1}}$$

normalized by the Nth-1 power of an effective x-section ($\sigma_{eff,NPS}$) plus a trivial combinatorial factor (m/n!) to avoid double,triple,N-counting in case of same particles produced:

• DPS:
$$m = 1$$
 if $a_1 = a_2$; and $m = 2$ if $a_1 \neq a_2$.

• TPS: m = 1 if $a_1 = a_2 = a_3$; m = 3 if $a_1 = a_2$, or $a_1 = a_3$, or $a_2 = a_3$; and m = 6 if $a_1 \neq a_2 \neq a_3$.

Ignoring all parton correlations, σ_{eff,NPS} is the inverse Nth-1 power of the integral of the Nth power of the pp overlap function:

$$\sigma_{\rm eff, \rm NPS} = \left\{\int d^2 b \, T^n(\mathbf{b})\right\}^{-1/(n-1)}$$

Most economical (geometrical) expressions for N-parton scattering xsections as a function of SPS x-sections & overlap function.

MPI-2021, Lisbon, Oct'21

Triple charm & beauty production (p-p)

- TPS x-sections are small: σ (SPS)³/ σ (eff)² ≈ 1 fb for σ (SPS) ≈ 1 µb, but rise fast (cube of SPS) with c.m. energy.
- **Charm & beauty** have large enough σ (SPS) to attempt TPS observation:

LHC (FCC). Contribution from triple-SPS, double-SPS processes?

MPI-2021, Lisbon, Oct'21

Triple-J/ψ from SPS production (p-p)

■ H.-S. Shao et al. [arXiv:1902.04949, PRL 122(2019)192002] computed all triple-J/Ψ x-sections with SPS HELAC-ONIA plus pocket formulas:

(a) SPS

		inclusive	$2.0 < \eta_{TLL} < 4.5$	$ u_{1,1,1} < 2.4$
		inclusive	$2.0 < g_{J/\psi} < 1.0$	$ gJ/\psi < 2.1$
	SPS	$0.41^{+2.4}_{-0.34}\pm0.0083$	$(1.8^{+11}_{-1.5} \pm 0.18) \times 10^{-2}$	$(8.7^{+56}_{-7.5} \pm 0.098) \times 10^{-2}$
$13 { m TeV}$	DPS	$(190^{+501}_{-140}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(7.0^{+18}_{-5.1}) \times \frac{10 \text{ mb}}{\sigma_{\rm eff,2}}$	$(50^{+140}_{-37}) \times \frac{10 \text{ mb}}{\sigma_{\mathrm{eff}_1 2}}$
	TPS	$130 imes \left(\frac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}}\right)^2$	$1.3 imes \left(rac{10 ext{ mb}}{\sigma_{ ext{eff},3}} ight)^2$	$18 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$
$27 { m ~TeV}$	SPS	$0.46^{+2.9}_{-0.39}\pm0.022$	$(3.2^{+22}_{-2.8} \pm 0.21) \times 10^{-2}$	$(5.8^{+39}_{-5.1} \pm 0.29) \times 10^{-2}$
	DPS	$(560^{+2900}_{-480}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(19^{+97}_{-16}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(120^{+630}_{-100}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$570 imes \left(rac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}} ight)^2$	$5.0 imes \left(rac{10 ext{ mb}}{\sigma_{ ext{eff},3}} ight)^2$	$57 imes \left(rac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}} ight)^2$
	SPS	$0.59^{+4.4}_{-0.52}\pm0.016$	$(3.0^{+25}_{-2.7} \pm 0.23) \times 10^{-2}$	$(7.2^{+63}_{-6.5} \pm 0.38) \times 10^{-2}$
$75 { m TeV}$	DPS	$(1900^{+11000}_{-1600}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(57^{+340}_{-50}) imes rac{10 \text{ mb}}{\sigma_{ m eff,2}}$	$(310^{+2000}_{-270}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$3900 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$27 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$260 imes \left(\frac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}}\right)^2$
100 TeV	SPS	$1.1^{+8.4}_{-1.0} \pm 0.044$	$(4.5^{+33}_{-4.0} \pm 0.72) \times 10^{-2}$	$(36^{+290}_{-32} \pm 1.8) \times 10^{-2}$
	DPS	$(3400^{+19000}_{-2900}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(100^{+550}_{-86}) \times \frac{10 \text{ mb}}{\sigma_{\rm eff,2}}$	$(490^{+3000}_{-430}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$6500 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$45 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$380 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$

1000000

0000000

 J/ψ

 J/ψ

 J/ψ