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What is double parton scattering?

Definition

Double parton scattering (DPS) is a
proton-proton scattering process in
which two partons from each proton
undergo two separate hard
interactions.

First appearance in theory studies:
Politzer Nucl. Phys. B172 (1980) 349

Paver, Treleani Nuovo Cim. A70 (1982) 215

Mekhfi Phys. Rev. D32 (1985) 2371

Other ground-setting works:
Gaunt, Stirling JHEP 03 (2010) 005

Blok et al. Eur. Phys. J. C72 (2012) 1963

Diehl et al. JHEP 03 (2012) 089

Manohar, Waalewijn Phys. Rev. D85 (2012) 114009

Ryskin, Snigierev Phys. Rev. D86 (2012) 014018

. . .
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Size comparison to SPS

I integrated XS:
σDPS

σSPS
∼ O

(
Λ2

Q2

)
=⇒ phase-space suppressed

I differential XS:
d2σSPS

d2q1d2q2
∼

d2σDPS

d2q1d2q2
=⇒ same power counting!
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When is DPS important?

Where DPS is enhanced

I generally, DPS relevance increases with collision energy

I competitive with SPS in regions of small |q⊥1 |, |q⊥2 |
→ e.g. two pairs of back-to-back jets

I enhanced by parton luminosities at small-x, e.g. Fgg ∝ (fg)
2

I DPS dominant contribution for coupling-suppressed processes in SPS
→ same-sign WW production at O(α2

s) in SPS, but O(1) in DPS

Some of the peculiarities of DPS

I equivalent of PDFs are double parton distributions (DPDs): more
complex, currently cannot be extracted from data

I polarization and color non-singlet combinations gain importance

I need to account for the overlap of single and double parton scattering
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DPS cross section

For colorless final states, an analogous factorized form to
the SPS case can be derived

◦ σ̂(i) are regular partonic cross sections

◦ Fab are double parton distributions (DPDs)

◦ y [GeV−1] is inter-parton transverse separation

x2p

p p̄

q1, Q1

q2, Q2

x1p x̄1p̄

x̄2p̄

here neglecting color indices and xi, x̄i dependence in the functions

C is a symmetry factor

Transverse-momentum dependent (TMD) factorization:

dσDPS

dq⊥1 dq⊥2
=

1

C

∑
a1a2b1b2

σ̂
(1)
a1b1

σ̂
(2)
a2b2

×
∫

d2y
d2z1

2π2

d2z2

2π2
e−iq

⊥
1 z1−iq

⊥
2 z2 Fa1a2(z1, z2, y)Fb1b2(z1, z2, y)

In TMD factorization, Fab(z1, z2, y) are the TMDDPDs in position space.
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x2p

p p̄

q1, Q1

q2, Q2

x1p x̄1p̄

x̄2p̄

here neglecting color indices and xi, x̄i dependence in the functions

C is a symmetry factor

Collinear factorization:

dσDPS =
1

C

∑
a1a2b1b2

σ̂
(1)
a1b1
⊗ σ̂(2)

a2b2
⊗
∫

d2y Fa1a2(y)⊗ Fb1b2(y)

In collinear factorization, Fab(y) are the collinear DPDs in position space.

Assuming no inter-partonic correlations whatsoever, obtain convenient XS
formula (the DPS pocket formula)

σDPS =
1

C

σSPS
1 σSPS

2

σeff
σeff used as a “measure” of DPS in exp’s
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Experimental searches DPS observed since the ’80s (4 jets, γ+3 jets, etc)

typical observables: WW , WJ/Ψ, J/ΨJ/Ψ, W+jets, ZZ, . . .

σeff measurements [CERN-EP-2018-274] like-sign WW [CMS-PAS-FSQ-16-009]

4` final state [CERN-EP-2018-274] W + 2 jets [CERN-PH-EP-2012-355]
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Latest extractions of σeff

latest measurements (CMS, 4-jets at 13 TeV) [CMS-PAS-SMP-20-007]
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Status of factorization

A formal all-order proof of the factorization formulae in perturbative QCD has
been achieved for DPS in the case of a colorless final state, both for the
TMD and the collinear case. Current status is at the same level as for the
SPS counterpart.

Diehl et al. JHEP 03 (2012) 089, JHEP 01 (2016) 076

Vladimirov JHEP 04 (2018) 045

Buffing et al. JHEP 01 (2018) 044

Diehl, RN JHEP 04 (2019) 124

The factorization procedure can be understood visually using cut diagrams:

SPS TMD factorization

P̄ P̄JB

P P

JA

S
H H ⇒

P̄ P̄JB

H H

P PJA

S
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Structure of the proof
The all-order factorization proof for DPS generalizes the proofs by Collins,
Soper, Sterman (CSS).

Sketch:

1. define a power counting, identify leading regions & introduce
kinematical approximations Diehl, Ostermeier, Schäfer JHEP 03 (2012) 089

2. loops have to be cut: establish a subtraction mechanism
Collins “Foundations of pQCD” (2011)

3. decouple collinear gluons from the hard interactions CSS Nucl.Phys.B261 (1985) 104

4. show factorization of Glauber gluons Diehl et al. JHEP 01 (2016) 076

5. factorize soft gluons from collinear graphs Diehl, RN JHEP 04 (2019) 124

6. obtain renormalized operator definitions of soft & collinear factors
Diehl, Ostermeier, Schäfer JHEP 03 (2012) 089
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5. factorize soft gluons from collinear graphs Diehl, RN JHEP 04 (2019) 124

6. obtain renormalized operator definitions of soft & collinear factors
Diehl, Ostermeier, Schäfer JHEP 03 (2012) 089

Factorized form (schematically):

dσDPS

dq⊥1 dq⊥2
∝ H(1)

a1b1
H

(2)
a2b2

∫
[F.T. on ~ξm]

∫
[F.T. on ~lm, l−m]S(~ξm)

× JA(l1, l2)
∣∣∣
l
+
1 =q

+
1 , l

+
2 =q

+
2

× JB(l̄1, l̄2)
∣∣∣
l̄
−
1 =q

−
1 , l̄

+
2 =q

−
2

7 / 17



Soft factor
Buffing et al. JHEP 01 (2018) 044

Vladimirov JHEP 12 (2016) 038
The soft factor has a few properties:

I hermitian in color space: Sa1a2 = S†a1a2

I hermitian in rep. space: RR
′
Sa1a2 = (R

′RSa1a2)∗
S

TMD factorization collinear factorization

JB
c Scd JA

d

In SPS and DPS, the soft factor
depends on the color structure and on

the Wilson-lines rapidity y = log v+

v−

↓

Collins-Soper equation:

∂

∂y
S(y) = K S(y)

JB
c Scd,ef JA

dH1
eH2

f

In SPS, integration over transverse
momenta implies Sq = 1.

In DPS, RR
′
Sa1a2 ∝ δRR′ , color

singlet 11Sqq = 1, but color
non-singlets like 88Sqq depend on

rapidity (however Sudakov suppressed).

At NNLO, S can be expressed
completely in terms of SPS TMD soft

factor
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Double parton distributions

“Bare” TMD DPDs

Definition of “bare” DPDs is similar to one of PDFs, obtained from JA,B

F
(0)
a1a2

(x1, x2, z1, z2, y) ∝ 〈p| Oa1(y, z1)Oa2(0, z2) |p〉
∣∣
z
+
i

=y
+
i

=0

in terms of operators O(y, z) ∼ ψ̄(y− 1
2z) Γψ(y+ 1

2z).

I z1 and z2 analog to impact factor b of single TMDs

I y spacelike transverse separation between the two partons

“Bare” collinear DPDs

Collinear DPDs are obtained from TMD DPDs:

I position-space DPDs F
(0)
a1a2(x1, x2, y) by letting z1, z2 → 0

↪→ appear in cross section

I momentum-space DPDs F
(0)
a1a2(x1, x2,∆) by Fourier transform

↪→ appear in DPD sum rules
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DGLAP evolution for renormalized DPDs

Position space: double DGLAP evolution

Renormalizing the bare DPDs adds one scale dependence for each parton:

dFa1a2(xi, y; µ1, µ2)

d logµ1
= 2

[
Pa1c(µ1)⊗

1
Fcb1(y; µ1, µ2)

]
(xi)

dFa1a2(xi, y; µ1, µ2)

d logµ2
= 2

[
Pca2(µ2)⊗

2
Fa1c(y; µ1, µ2)

]
(xi)

Momentum space: generalizedn DGLAP evolutio

Momentum-space dependent DPDs obey inhomogeneous evolution
equations:

dFa1a2(xi,∆; µ, µ)

d logµ

= 2
[
Pa1c(µ)⊗

1
Fca2(∆; µ, µ) + Pca2(µ)⊗

1
Fa1c(∆; µ, µ)

+ Ps, a1a2,a0(µ)⊗
12
fa0(µ)

]
(xi)

where Ps is the 1→ 2 splitting function.
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Numerical computation of DPD evolution

Double DGLAP evolution is a non-trivial numerical task, but it is also the
main ingredient for DPS phenomenological studies.

Gaunt-Stirling JHEP 03 (2010) 005

I LO DGLAP (both y- and ∆-dependent)

Only publicly available set: GS09 [gsdpdf.hepforge.org]

I based on products of MSTW2008 PDFs

I y-integrated DPDs

[J. Gaunt’s talk @ MPI10]

10
-5

0.001 0.100

10
-10

10
-8

10
-6

10
-4

ChiliPDF project to be released

I NNLO DGLAP, with NNLO flavor matching

I all polarizations included

I unequal-scale evolution (µ1 6= µ2)

I flexible input (numerical, analytical, . . . )

I flexible y-dependence Ansatz

[Diehl, RN, Tackmann, Plößl]

Private evolution codes have been developed by other groups e.g. Elias, Golec-Biernat, Staśto.
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DPD sum rules

I integrated DPDs (i.e. momentum-space DPDs at ∆ = 0) obey sum rules
analogous to the PDF ones, and expressed in terms of PDFs

I these can be used to constrain DPD models

Diehl et al. Eur.Phys.J.C 79 (2019) 3, 253, Eur.Phys.J.C 80 (2020) 5, 468

Momentum sum rule

∑
a2

∫ 1−x1

0

dx2 x2 Fa1a2(x1, x2,∆ = 0; µ) = (1− x1) fa1(x1; µ)

Number sum rule∫ 1−x1

0

dx2 [Fa1a2(x1, x2,∆ = 0; µ)− Fa1ā2(x1, x2,∆ = 0; µ)]

= (Na2,v + δa1ā2 − δa1a2) fa1(x; µ)

where Na,v is the number of valence partons of type a

sum rules for triple parton distributions in O. Fedkyevich’s talk (Tuesday)
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DPDs from perturbative splitting

At present, DPDs cannot be extracted
from exp’s→ Ansatz necessary

A class of DPD Ansätze at small y

From OPE, at small y DPDs are sum
of “intrinsic” and “splitting” piece

F (y) = Fint(y) + Fspl(y)

At large y DPDs can be modeled so
that limy→∞ F (y) = 0.

Perturbative splitting

I from MEs: Fspl(y) ∝ 1

y2

I UV divergence in cross-section∫
d2y F1 F2 ∼

∫
d2y

y4

I reason: region of overlap between
SPS and DPS

intrinsic (Fint or “2”)

twist-4 distribution at small y, nonperturbative

perturbative splitting (Fspl or “1”)

I LO: Fab ∝ Pa0→ab · fa0

Diehl et al. JHEP 03 (2012) 089

I NLO: computed, also color non-singlet

Diehl et al. SciPost Phys. 7 (2019) 017

Diehl et al. JHEP 08 (2021) 040

see P. Plößl’s talk
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Interplay of splitting and intrinsic contributions

2v2→ not divergent

2v1→ divergence is
d2y

y2
→ log y terms

1v1→ divergence is
d2y

y4
, must be subtracted
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Double-counting between SPS and DPS

The UV divergence in y is associated to the double counting of SPS and
DPS contributions in the region where y → 0:

DPS interpretation (1v1) SPS interpretation
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Double-counting between SPS and DPS

The UV divergence in y is associated to the double counting of SPS and
DPS contributions in the region where y → 0:

DPS interpretation (1v1) SPS interpretation

Solution: DGS scheme

The DGS subtraction scheme cancels the UV divergence at all orders:

σ = σSPS + σDPS − σsub , σsub = σDPS with F1,2 = Fspl

where the DPS cross section is regularized introducing a cutoff ν ∼ Q

σDPS ∝
∫

d2y F1(y)F2(y)→
∫

d2yΦ2(yν)F1(y)F2(y)

Simple cutoff regulator Φ(yν) = Θ(yν − 2e−γE).
Diehl, Gaunt, Schönwald JHEP 06 (2017) 083
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State of the art

Recent theory developments
I dShower: a parton shower combining SPS and DPS, implementing the

“1→ 2” splitting and treating the SPS-DPS double counting
Cabouat, Gaunt JHEP 10 (2020) 012

see Gaunt’s talk (Thursday)

I lattice QCD: extracted moments of the pion DPD and of the proton DPD
Bali et al. JHEP 02 (2021) 067, JHEP 09 (2021) 106

I a lot more insight on DPDs: evolution, sum rules, NLO splitting, color
non-singlet distributions Diehl et al. SciPost Phys. 7 (2019) 2, 017, Eur.Phys.J.C 80 (2020) 5, 468,

JHEP 08 (2021) 040, arXiv:2109.14304

see Plößl’s talk

DPS phenomenology
I DPD models

↪→ constituent quark models (Rinaldi, Scopetta, Ceccopieri), “bag” model (Manohar, Waalewijn)

valence quark models (Broniowski, Ruiz Arriola), KMR approach (Golec-Biernat, Staśto), . . .
I multitude of phenomenological studies that include DPS

Blok, Dokshitzer, Frankfurt, Strikman, Maciu la, Szczurek, Kutak, van Hameren, Gaunt, Kom, Kulesza, Stirling, Fedkyevich,

Kasemets, Myska, Cotogno, Lansberg, Yamanaka, Zhang, Shao, Ceccopieri, Rinaldi, Scopetta, . . . . . .

talks by Fedkyevich, Rinaldi, Szczurek, Yamanaka this week

I DPS in pA collisions and TPS (triple parton scattering) D’Enterria, Snigirev, Blok

see talks by Blok, D’Enterria
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Summary

I DPS can be comparable or even dominant with SPS in several cases

I DPS factorization proof for color singlet is at the same level as for SPS

I double-counting of SPS and DPS in small-y region is understood

I double DGLAP evolution and flavor matching are under control thanks to
developments of new tools

I perturbative splitting form of DPDs known up to NLO, also for color
non-singlet distributions see next talk!

I numerous interesting contributions to DPS sessions at MPI@LHC21!

Thank you for your attention!
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