The Electron Ion Collider and Gluon imaging using azimuthal correlations at the EIC

Heikki Mäntysaari

University of Jyväskylä, Department of Physics Finland

The Electron Ion Collider

Project Goals

- \bullet High luminosity: ${\cal L} = 10^{33} 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$
- Scalable CME: $\sqrt{s} = 20 140 \,\, {
 m GeV}$
- Polarized e and hadron beams (up to 70%)
- Hadron beam: from protons to uranium nuclei

Schedule

- NSAC Long Range Plan 2015, recomended by NAS 2018
- Mission need (CD0) and cost range (CD1) approved
- Site selected: BNL (EIC will re-use RHIC)
- $\bullet\,$ Construction starts in ${\sim}2024,$ first data-taking in ${\sim}2032$

EIC Schedule

Tim Hallman (US DOE), DIS2021 conference

Heikki Mäntysaari (JYU)

EIC and gluon imaging

EIC Physics Program

Fundamental physics questions

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What is the 3-dimensional partonic structure of protons, and how does it change in nuclear environment?
- What are the emergent properties of dense systems of gluons?

Why nuclear DIS?

- Clean environment for precison studies (e.g. can construct kinematics exactly)
- Parton density $\sim x^{-\lambda} A^{1/3}$

Increasing A is much cheaper than decreasing x

EIC Yellow Report: arXiv:2103.05419

Access to completely new kinematical domain

- First nuclear-DIS machine in collider kinematics = large \sqrt{s}
- Similarly: in polarized e + p: huge increase in x, Q² coverage over previous experiments

Example: effect on nuclear PDF uncertainty

EIC YR, arXiv:2103.05419

Access very large parton densities and non-linear dynamics

HERA: parton densities $\sim x^{-\lambda}$, eventually violates unitarity

Non-linear QCD effects at small x (e.g. $gg \to g$) should tame the growth saturated state of gluonic matter, emergent semi-hard saturation scale $Q_s^2 \sim (A/x)^{1/3}$

MPIs at the EIC at MPI@LHC

Experimental data from HERA

D. Gangadharan on Tuesday: Search for collective behaviour and multiparton interactions in ep scattering at HERA

Pythia development

M. Utheim on Monday: PYTHIA8: soft QCD model, news and updates

Theory development

F. Salazar on Mon: *Forward dijet production* M. Strikman on Thu:

Neutron production in ZDC as a probe of the dynamics of hard gamma A and pA interactions

Sensitivity of charged hadron spectra in e + p on Pythia MPI model details

Our recent work: spatial correlations in the gluon field

Imaging using DVCS and exclusive J/ ψ production: $e + p \rightarrow \gamma(J/\psi) + p$ H.M, Roy, Salazar, Schenke, arXiv:2011.02464

Advantages in exclusive scattering

- No net color charge transfer: $\sim {\rm gluon}^2$
- Possibility to measure total momentum transfer Fourier conjugate to the impact parameter

This work (arXiv:2011.02464)

More differential measurement

- \Rightarrow more detailed probe of target structure
 - Exclusive vector particle production differentially in both t and azimuthal angle $\phi_{e\Delta}$

Deeply Virtual Compton Scattering* - coordinate space description

Calculate $\gamma^* + p \rightarrow \gamma^* + p$, later take final state to be real photon or ${\rm J}/\psi$

Results in agreement with Hatta, Yuan, Xiao, 1703.02085

$$\mathcal{M}_{0,0} \sim \int_{\mathbf{b}} e^{-i\mathbf{\Delta}\cdot\mathbf{b}} \int_{\mathbf{r}} D(\mathbf{r},\mathbf{b}) \int_{z} e^{-i\delta\cdot\mathbf{r}} z^{2} \bar{z}^{2} Q \mathcal{K}_{0}(\varepsilon r) Q' \mathcal{K}_{0}(\varepsilon' r)$$
$$\mathcal{M}_{\pm 1,\mp 1} \sim \int_{\mathbf{b}} e^{-i\mathbf{\Delta}\cdot\mathbf{b}} \int_{\mathbf{r}} e^{\pm 2i\phi_{r\Delta}} D(\mathbf{r},\mathbf{b}) \int_{z} e^{-i\delta\cdot\mathbf{r}} z \bar{z} \varepsilon \mathcal{K}_{1}(\varepsilon r) \varepsilon' \mathcal{K}_{1}(\varepsilon' r)$$

Similar results for $\mathcal{M}_{\pm 1,\pm 1}, \mathcal{M}_{\pm 1,0}, \mathcal{M}_{0,\pm 1}$. Neglecting the off-forward phase $\delta = (z - \overline{z})\Delta/2$:

- $\mathcal{M}_{0,0} \sim$ angle independent part of dipole-target amplitude $\mathit{D}(\mathbf{r},\mathbf{b})$
- $\mathcal{M}_{\pm 1,\mp 1}$: sensitive to cos(2 $\phi_{r,b}$) modulation of the dipole (\sim gluon distribution)

Deeply Virtual Compton Scattering*

$$\mathcal{M}_{\pm 1,\mp 1} \sim \int_{\mathbf{b}} e^{-i\mathbf{\Delta}\cdot\mathbf{b}} \int_{\mathbf{r}} e^{\pm 2i\phi_{\mathbf{r}\Delta}} D(\mathbf{r},\mathbf{b}) \int_{z} e^{-i\delta\cdot\mathbf{r}} z \bar{z} Q \varepsilon K_{1}(\varepsilon r) \varepsilon' K_{1}(\varepsilon' r)$$

Two sources of correlations between ${f r}$ (which knows about the electron in DIS) and ${f \Delta}$

- Intrinsic: correlation between \mathbf{r} and \mathbf{b} in the dipole $D(\mathbf{r}, \mathbf{b})$
 - Related to elliptic gluon GPD Hatta, Yuan, Xiao, 1703.02085
- *Kinematic*: off-forward phase $e^{-i\delta \cdot \mathbf{r}}$ with $\delta = (z \overline{z})\mathbf{\Delta}/2$
 - Different propagation axis, mixes polarizations

Azimuthal correlations in DVCS in DIS

Full calculation at $Q'^2 = 0$ including the photon flux f(y) in 2011.02464

In agreement with hatta, Yuan, Xiao, 1703.02085

$$\frac{\mathrm{d}\sigma^{ep \to e\gamma p}}{\mathrm{d}t\mathrm{d}\phi_{e\Delta}} \sim f_{TT}(y) [\mathcal{M}^2_{\pm 1,\pm 1} + \mathcal{M}^2_{\pm 1,\mp 1}] + f_{TT,\mathrm{flip}}(y) \mathcal{M}^2_{0,\pm 1} \\ - f_{LT}(y) \mathcal{M}_{0,\pm 1} [\mathcal{M}_{\pm 1,\pm 1} + \mathcal{M}_{\pm 1,\mp 1}] \mathrm{cos}(\phi_{e\Delta}) \\ + f_{TT,\mathrm{flip}}(y) \mathcal{M}_{\pm 1,\pm 1} \mathcal{M}_{\pm 1,\mp 1} \mathrm{cos}(2\phi_{e\Delta})$$

The $\cos(2\phi_{e\Delta})$ modulation in $ep \rightarrow e\gamma p$: Access to **r**, **b** correlations in the dipole Dvia $\mathcal{M}_{\pm 1,\mp 1}$ \Rightarrow elliptic gluon GPD / Wigner distribution

y is the inelasticity in DIS

Figure: CLAS

Predictions for the EIC, setup

Color Glass Condensate based setup: MV model at $x \sim 0.01 + \text{JIMWLK}$ evolution. γ and J/Ψ t spectra not sensitive to the angular dependence

Good description of the HERA DVCS and exclusive J/ψ data. To compute J/ψ , we replace γ^* wave function by Boosted Gaussian describing vector mesons

Coherent J/ψ at the EIC: spectra and relative modulation

- Significant $\cos(2\phi_{k\Delta})$ modulation in J/ ψ production (and larger in DVCS)
- Very small v_1 , as that is dominated by the off-forward phase $e^{-i\delta \cdot \mathbf{r}}$ \Rightarrow small contribution at small $r \sim 1/M_V$.

H.M, Roy, Salazar, Schenke 2011.02464

Nuclear targets at the EIC

Much smaller modulations with nuclear targets: Smoother target, smaller density gradients \Rightarrow smaller dependence on $\phi_{r,b}$

H.M, Roy, Salazar, Schenke 2011.02464

Sensitivity on the correlations in the color field

Dumitru, H.M, Paatelainen, Roy, Salazar, Schenke, arXiv:2105.10144

Modulations in $e+p \rightarrow {\rm J}/\Psi + p$ Different models for color charge correlation in proton

• MV: $\langle \rho \rho \rangle$ local Gaussian

HM, Roy, Schenke, arXiv:2011.02464

• LCPT: $\langle \rho \rho \rangle$ from perturbative calculation in the dilute region

Dumitru, H.M, Paatelainen, arXiv:2103.11682

• LCPT no v_2 : elliptic gluon GPD set to 0

Potentially sensitive observable to extract elliptic gluon GPD or gluon Wigner distribution!

Conclusions and outlook

The Electron-Ion Collider in the US

- First ever nuclear DIS measurements in collider kinematics
- High energy, luminosity and polarization
- Broad physics program in unexplored kinematical domain

Gluon imaging using azimuthal correlations in exclusive scattering

- ullet Calculated azimuthal correlations between e and the exclusively produced γ or J/Ψ
- Identify intrinsic (related to elliptic gluon GPD) and kinematical contributions
- EIC prediction: significant 5...10% azimuthal modulations with proton targets
- Modulations suppressed at high $W/small x_{\mathbb{P}}$
- Very small modulations with nuclear targets
- Sensitive to details of the theoretical description of the proton color field

Backups

Predictions for the EIC, setup

EIC energies, consider e+p collisions at $\sqrt{s}=140\,{
m GeV}$ and $e+{
m Au}$ at $\sqrt{s}=90\,{
m GeV}$

- Initial condition: MV model with $g^4 \mu^2 \sim Q_s^2 \sim {\cal T}_p({f b})$
- Small-x JIMWLK evolution up to $Y = \ln(0.01/x_{\mathbb{P}})$
- Wilson lines evolved event-by-event, result averaged over an ensamble of configurations

Angular modulation with $x = 0.01e^{-y}$ dependence computed from the CGC setup

Coordinate space modulation can be related to elliptic gluon GPD or Wigner distribution

Note: recent developments beyond MV for protons suggest negative v_2 , see

arXiv:2103.11682

HM, Mueller, Schenke, 1902.05087

Toy model example

Demonstrate sensitivity on \mathbf{r}, \mathbf{b} angular correlations in the dipole amplitude D, using GBW $D(\mathbf{r}, \mathbf{b}) = 1 - \exp\left[-\frac{\mathbf{r}^2 Q_{s0}^2}{4} T_p(\mathbf{b}) \left(1 + \frac{\tilde{c}}{2} \cos(2\phi_{rb})\right)\right]$ with $T_p(\mathbf{b}) = e^{-\mathbf{b}^2/(2B_p)}$

 $\tilde{c} = 0$, no $\phi_{r,b}$ dependence in D $\tilde{c} = 0.5$, large $\phi_{r,b}$ dependence in D $\phi_{r,b}$ dependence in D significantly increases $\cos(2\phi_{k,\Delta})$ modulation in the DVCS cross section Smaller effect on $\cos(\phi_{k\Delta})$ H.M., Roy, Salazar, Schenke 2011.02464

0.2 < |t| < 0.04

H.M, Roy, Salazar, Schenke 2011.02464

Dipole size $\sim 1/Q^2$

- Smaller density gradients seen by dipoles at high Q²
 ⇒ Smaller *intrisic contrubtion*, decreasing v₂
- Small dipoles also result in small contribution from off-forward phase $e^{-i\delta \cdot \mathbf{r}}$, visible v_1 .
- Additional effect: At the kinematical y = 1 boundary modulations vanish In DVCS at x_ℙ = 0.001 this is at Q² ≈ 20GeV².

Coherent DVCS at the EIC: spectra and relative modulation

- Significant 5...10% $\cos(2\phi_{k\Delta})$ modulation at $|t|\gtrsim 0.5 {
 m GeV}^2$
- Small-x evolution decreases anisotropies \Rightarrow decreasing $v_n = \langle \cos(n\phi_{k\Delta}) \rangle$

H.M, Roy, Salazar, Schenke 2011.02464

Incoherent diffraction

Incoherent cross section \sim covariance $\langle {\cal M}^2 \rangle - \langle {\cal M} \rangle^2$ is sensitive to the (amount of) fluctuations $_{\rm H.M,\ Schenke,\ 1603.04349}$

Potential to access fluctuations in detail by studying azimuthal correlations in $e + p \rightarrow e + \gamma + p^*$ and $e + p \rightarrow e + J/\psi + p^*$?

Incoherent modulation

- Substructure changes v_2 at $|t| \gtrsim 0.5 {
 m GeV}^2$ where one is sensitive to small distance scales
- Significantly larger modulations with fluctuations
- JIMWLK evolution also suppresses incoherent v_2