

Accessing the proton UGD via exclusive polarized p-meson leptoproduction at HERA and the EIC

Francesco Giovanni Celiberto

ECT*/FBK Trento & INFN-TIFPA

ECT* EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

MPI 2021 Lisbon, October 14th, 2021

Trento Institute for **Fundamental Physics** and Applications

Parton densities: hors d'œuvre

Parton densities \rightarrow relevant for the search of **New Physics**...

\rightarrow ...crucial role in the understanding and exploration of **QCD**

- **Nonperturbative** objects that enter the expression of cross sections
- Can be *extracted* from experiments via *global fits*

1.0 Introductory remarks

Describe the internal structure of the nucleon in terms of its elementary constituents (quarks and gluons)

Parton densities: hors d'œuvre

Parton densities \rightarrow relevant for the search of **New Physics**...

\rightarrow ...crucial role in the understanding and exploration of **QCD**

- **Nonperturbative** objects that enter the expression of cross sections
- Can be *extracted* from experiments via *global fits*

- Respect different **factorization theorems**
- Exhibit peculiar **universality properties**
- Obey distinct **evolution equations**

1.0 Introductory remarks

Describe the internal structure of the nucleon in terms of its elementary constituents (quarks and gluons)

- * Semi-inclusive processes
- * $\kappa_T \ll$ hardest scale
- Language of **parton correlators** *
- Diagram: **SIDIS onium** *

1.0 Introductory remarks

TMD versus HEF

- Semi-inclusive processes
- * $\kappa_T \ll$ hardest scale
- Language of **parton correlators** *
- Diagram: **SIDIS onium** *

1.0 Introductory remarks

TMD versus HEF

- Inclusive or exclusive processes (!)
- * Small *x*, large κ_T
- Language of **Reggeized gluons** *
- Diagram: **DIS** *

TMD versus HEF

IR-safe colorless $\{\Phi^{i \rightarrow 0}\}$

Semi-in (Fadin-Martin theorem)
 [V.S. Fadin, A.D. Martin (1999)]

* $\kappa_T \ll$ hardest scale

- * Language of parton correlators
- * Diagram: **SIDIS onium**

TMD PDF

1.0 Introductory remarks

- * Inclusive or exclusive processes (!)
- * Small *x*, large κ_T
- * Language of **Reggeized gluons**
- * Diagram: **DIS**

TMD versus HEF

IR-safe colorless $\{\Phi^{i \rightarrow 0}\}$

×

Semi-in (Fadin-Martin theorem) [V.S. Fadin, A.D. Martin (1999)]

* $\kappa_T \ll$ hardest scale

* Language of parton correlators

IR diffusion pattern

1.0 Introductory remarks

- ***** Inclusive or exclusive processes (!)
- * Small *x*, large κ_T
- Language of **Reggeized gluons** *
- Diagram: **DIS** *

Forward emissions

* Asymmetric config. \leftrightarrow fast parton + small-x gluon

2.0 HEF

Central emissions

* Gluon induced \leftrightarrow small-x gluons

4

Forward emissions

- * Asymmetric config. \leftrightarrow fast parton + small-*x* gluon
- * Hybrid **high-energy/collinear** factorization

Central emissions

* *Gluon induced* \leftrightarrow small-*x* gluons

* Pure **high-energy** factorization

Forward emissions

- * Asymmetric config. \leftrightarrow fast parton + small-x gluon
- * Hybrid **high-energy/collinear** factorization

* *Distinctive signals* of small-*x* dynamics **expected**

2.0 HEF

Central emissions

* *Gluon induced* \leftrightarrow small-*x* gluons

* Pure **high-energy** factorization

* Small-*x* dynamics to **enhance** f.o. description

Forward emissions

- * Asymmetric config. \leftrightarrow fast parton + small-x gluon
- * Hybrid **high-energy/collinear** factorization

- * *Distinctive signals* of small-*x* dynamics **expected**
- Phenomenology:
 forward jet, Drell-Yan, Higgs or vector meson

Table complemented by *exclusive* counterparts and *lepto-hadronic* channels

2.0 HEF

Central emissions

* *Gluon induced* \leftrightarrow small-*x* gluons

* Pure **high-energy** factorization

* Small-*x* dynamics to **enhance** f.o. description

Phenomenology:
 central jet, Higgs or vector meson

4

High-energy factorization and the UGD

2.0 HEF

• example: virtual photoabsorption in high-energy factorization

 $\sigma_{\text{tot}}(\gamma^* p \to X) \propto \Im m_s \{ \mathcal{A}(\gamma^* p \to \gamma^* p) \} \equiv \Phi_{\gamma^* \to \gamma^*} \circledast \mathcal{F}(x, \kappa^2)$

 $\Rightarrow \mathcal{F}(x, \kappa^2)$ is the unintegrated gluon distribution (UGD) in the proton

Diffractive $\gamma^{(*)}P$ scattering and color dipoles

$$W_{\mu\nu} \propto \operatorname{Im}\left\{i\int \mathrm{d}^4 x \, e^{i\,q\cdot x} \left\langle P \,|\, \mathrm{T}\left[J_{\mu}(x) \, J_{\nu}(0)\right] \,|\, P\right\rangle\right\}$$

* Small- $x \Rightarrow$ **Ioffe time** $\gg R_P$

* At least one J_{μ} <u>outside</u> proton...

* ...color dipole picture!

Exclusive emissions of forward mesons

Exclusive forward ρ -meson leptoproduction

Exclusive forward ρ -meson leptoproduction

- - \rightarrow same physical mechanism, scattering of small transverse size of dipole on the proton target, at work \Rightarrow high-energy factorization

$$\sum_{\rho \lambda_{\gamma}} (s; Q^2) = is \int \frac{d^2 \kappa}{(\kappa^2)^2} \Phi^{\gamma^*(\lambda_{\gamma}) \to \rho(\lambda_{\rho})} (\kappa^2, Q^2) \mathcal{F}(x, \kappa^2), \quad x = \frac{Q^2}{s}$$

Exclusive forward ρ -meson production at HERA

[A.D. Bolognino, F.G.C., D.Yu. Ivanov, A. Papa (2018)] (extension to ϕ -meson emissions) \mathscr{O} [A.D. Bolognino, A. Szczurek, W. Schäfer (2020)] A.D. Bolognino, PhD Thesis (2021)] (in this slide) 🔗 [A.D. Bolognino, F.G.C., D.Yu. Ivanov, A. Papa, W. Schäfer, A. Szczurek (2021)] 10

A.D. Bolognino, PhD Thesis (2021)]

Forward mesons

(extension to ϕ -meson emissions) \mathscr{O} [A.D. Bolognino, A. Szczurek, W. Schäfer (2020)] (in this slide) 🔗 [A.D. Bolognino, F.G.C., D.Yu. Ivanov, A. Papa, W. Schäfer, A. Szczurek (2021)] 11

Single forward emissions

Exclusive light VM: ρ^0, ω, ϕ

- Small-size dipoles \Rightarrow large κ_T
- Collinear description: twist-2/-3 LVM NP **DAs** *

$$\Phi^{\gamma^* \to \rho} \propto \int_0^1 \mathrm{d} z \, T_H^{\gamma^* \to \rho}(z, \kappa_T, Q, \mu_R, \mu_F) \, \phi^{\lambda_\rho}(z, \mu_F)$$

- Significance of small κ_T under investigation...
- HERA indication: no large- r_d dynamics *
- Pheno outcome: sensitivity to **intermediate** κ_T
- ***** LVMs as tools: discrimination among UGD models

Single forward emissions

Exclusive light VM: ρ^0, ω, ϕ

- * Small-size dipoles \Rightarrow large κ_T
- ***** Collinear description: twist-2/-3 LVM NP **DAs**

$$\Phi^{\gamma^* \to \rho} \propto \int_0^1 \mathrm{d}z \, T_H^{\gamma^* \to \rho}(z, \kappa_T, Q, \mu_R, \mu_F) \, \phi^{\lambda_\rho}(z, \mu_F)$$

- ***** Significance of small κ_T under investigation...
- ***** HERA indication: no large- r_d dynamics
- * Pheno outcome: sensitivity to **intermediate** κ_T
- ***** LVMs as tools: discrimination among UGD models

3.0 Forward mesons

Quarkonia

- * Size of dipoles \Rightarrow wide range of κ_T
- * Description: **NRQCD** (combined with LFWFs)
- $F) \begin{bmatrix} LFWF \otimes \mathscr{A}_{dip.} \end{bmatrix} \stackrel{\text{dilute}}{\longleftrightarrow} \begin{bmatrix} \Phi^{\gamma^* \to J/\Psi} \otimes UGD \end{bmatrix}$
 - ✤ Validity of small-size dipoles questionable...
 - * NRQCD: large- r_d dynamics for $\Psi(2s)$ ($\Upsilon(2s)$?)
 - [K. Suzuki et al. (2000)];
 [J. Cepila et al. (2019)];
 [M. Hentschinski et al. (2020)]
 [X. Suzuki et al. (2000)];
 [X. Suzuki et a
 - ***** Onia as tools: scan of TMD/HEF intersection range

Mapping the proton content at small-x

4.0 Toward new directions

Backup slides

Incomplete list of small-x formalisms \rightarrow linear (BFKL) or saturation (BK/JIMWLK) effects embodied

A (hybrid) high-energy factorization established

BFKL UGD: pure small-x evolution, Reggeons

***** HEF, CCFM, PRA **uPDFs**: BFKL + collinear matching

Omnes viae small-x ducunt

Incomplete list of small-x formalisms \rightarrow linear (BFKL) or saturation (BK/JIMWLK) effects embodied

Unintegrated parton densities

A (hybrid) high-energy factorization established

BFKL UGD: pure small-x evolution, Reggeons

★ HEF, CCFM, PRA **uPDFs**: BFKL + collinear matching

Small-x improved collinear PDFs

DGLAP description improved via BFKL

*** ABF approach**: PDFs + small-*x* resummed splitting

[R.D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, L. Rottoli (2018)] Ø

Omnes viae small-x ducunt

Incomplete list of small-x formalisms \rightarrow linear (BFKL) or saturation (BK/JIMWLK) effects embodied

Unintegrated parton densities

A (hybrid) high-energy factorization established

BFKL UGD: pure small-x evolution, Reggeons

***** HEF, CCFM, PRA **uPDFs**: BFKL + collinear matching

Small-x improved collinear PDFs

DGLAP description improved via BFKL

*** ABF approach**: PDFs + small-*x* resummed splitting

[R.D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, L. Rottoli (2018)]

Nonperturbative content via an enhanced spectator model

***** Pavia model: initial-scale f_1^g and g_{1L}^g matched to PDFs

A. Bacchetta, F.G.C., M. Radici, P. Taels (2020)

Small-x improved gluon TMDs

Incomplete list of small-x formalisms \rightarrow linear (BFKL) or saturation (BK/JIMWLK) effects embodied

Unintegrated parton densities

A (hybrid) high-energy factorization established

BFKL UGD: pure small-x evolution, Reggeons

***** HEF, CCFM, PRA **uPDFs**: BFKL + collinear matching

Small-x improved collinear PDFs

DGLAP description improved via BFKL

*** ABF approach**: PDFs + small-*x* resummed splitting

[R.D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, L. Rottoli (2018)]

Nonperturbative content via an enhanced spectator model

***** Pavia model: initial-scale f_1^g and g_{1L}^g matched to PDFs

A. Bacchetta, F.G.C., M. Radici, P. Taels (2020)

Need for sub-eikonal corrections, neglected by BFKL

BER: DLA, flavor singlet and nonsinglet

KPS: evolution via Wilson lines, saturation

Small-x improved gluon TMDs

Incomplete list of small-x formalisms \rightarrow linear (BFKL) or saturation (BK/JIMWLK) effects embodied

Unintegrated parton densities

A (hybrid) high-energy factorization established

BFKL UGD: pure small-x evolution, Reggeons

***** HEF, CCFM, PRA **uPDFs**: BFKL + collinear matching

Small-x improved collinear PDFs

DGLAP description improved via BFKL

*** ABF approach**: PDFs + small-*x* resummed splitting

[R.D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, L. Rottoli (2018)]

Nonperturbative content via an enhanced spectator model

***** Pavia model: initial-scale f_1^g and g_{1L}^g matched to PDFs

A. Bacchetta, F.G.C., M. Radici, P. Taels (2020)

Need for sub-eikonal corrections, neglected by BFKL

BER: DLA, flavor singlet and nonsinglet

KPS: evolution via Wilson lines, saturation

CGC/JIMWLK gluon TMDs

Gluon-recombination effects encoded

- *** WW** vs **DP** gluon TMDs, **GTMDs**
- **iTMD**: interpolating between TMD and BFKL regimes

Small-x improved gluon TMDs

Incomplete list of small-x formalisms \rightarrow linear (BFKL) or saturation (BK/JIMWLK) effects embodied

Unintegrated parton densities

A (hybrid) high-energy factorization established **BFKL UGD**: pure small-x evolution, Reggeons

***** HEF, CCFM, PRA **uPDFs**: BFKL + collinear matching

Small-x improved collinear PDFs

DGLAP description improved via BFKL

*** ABF approach**: PDFs + small-*x* resummed splitting

[R.D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, L. Rottoli (2018)]

Nonperturbative content via an enhanced spectator model

P

Need for sub-eikonal corrections, neglected by BFKL

BER: DLA, flavor singlet and nonsinglet

KPS: evolution via Wilson lines, saturation

CGC/JIMWLK gluon TMDs

Gluon-recombination effects encoded

- *** WW** vs **DP** gluon TMDs, **GTMDs**
- **iTMD**: interpolating between TMD and BFKL regimes

Small-x improved gluon TMDs

***** Pavia model: initial-scale f_1^g and g_{1L}^g matched to PDFs

[A. Bacchetta, F.G.C., M. Radici, P. Taels (2020)]

Inclusive forward Drell-Yan dilepton production

Inclusive forward Drell-Yan dilepton production

$$\mathcal{W}_{[\lambda]} = \frac{2\pi M^2}{3} \int_{x_F}^1 \frac{dz}{z^2} \sum_{r=q,\bar{q}} f_r\left(\frac{x_F}{z},\mu_F\right) \int \frac{d\kappa_T d\phi_{\kappa_T}}{\left(\kappa_T^2\right)^2} \alpha_s(\mu_R) \mathcal{F}(x_g,\kappa_T^2) \Phi_{[\lambda]}(q_T,\vec{\kappa}_T)$$

$$\mathcal{W}_{[\lambda]} = \frac{2\pi M^2}{3} \int_{x_F}^1 \frac{dz}{z^2} \sum_{r=q,\bar{q}} f_r\left(\frac{x_F}{z},\mu_F\right) \int \frac{d\kappa_T d\phi_{\kappa_T}}{\left(\kappa_T^2\right)^2} \alpha_s(\mu_R) \mathcal{F}(x_g,\kappa_T^2) \Phi_{[\lambda]}(q_T,\vec{\kappa}_T)$$

Inclusive forward Drell-Yan dilepton production

, Z

$$\mathcal{W}_{[\lambda]} = \frac{2\pi M^2}{3} \int_{x_F}^1 \frac{dz}{z^2} \sum_{r=q,\bar{q}} f_r\left(\frac{x_F}{z},\mu_F\right) \int \frac{d\kappa_T d\phi_{\kappa_T}}{\left(\kappa_T^2\right)^2} \alpha_s(\mu_R) \mathcal{F}(x_g,\kappa_T^2) \Phi_{[\lambda]}(q_T,\vec{\kappa}_T)$$

Diffractive slope

Empirical parametrization \rightarrow introduces *smaller* uncertainties than UGD ones

$$b(Q^2) = \beta_0 - \beta_1 \log \left[\frac{Q^2 + m_{
ho}^2}{m_{J/\psi}^2} \right] + \frac{\beta_2}{Q^2 + m_{
ho}^2}$$

$$\sigma_L (\gamma^* p \to \rho p) = \frac{1}{16\pi b(Q^2)} \left| \frac{T_{00}(s, t=0)}{W^2} \right|$$
$$\sigma_T (\gamma^* p \to \rho p) = \frac{1}{16\pi b(Q^2)} \left| \frac{T_{11}(s, t=0)}{W^2} \right|$$

 $\beta_0 = 6.5 \text{ GeV}^{-2}, \, \beta_1 = 1.2 \text{ GeV}^{-2} \text{ and } \beta_2 = 1.6$

