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PI Production: Relevance @ LHC 
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• Exclusive/semi-exclusive production: colour singlet photon naturally leads 
to events with intact protons/rapidity gaps in final state.

• Can be selected either with proton tagging or via rapidity gap vetos (i.e. 
elastic + inelastic = semi-exclusive production).

20

Lepton pair production

• ATLAS (arXiv:1506.07098) have measured exclusive   and    pair 
production      use                    to compare to this.
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Measurement of exclusive �� ! `+`� production in proton–proton
collisions at

p
s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter reports a measurement of the exclusive �� ! `+`� (` = e, µ) cross-section in
proton–proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment
at the LHC, based on an integrated luminosity of 4.6 fb�1. For the electron or muon pairs
satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to
extract the fiducial cross-sections. The cross-section in the electron channel is determined to
be�excl.

��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb for a phase-space region with invariant
mass of the electron pairs greater than 24 GeV, in which both electrons have transverse
momentum pT > 12 GeV and pseudorapidity |⌘| < 2.4. For muon pairs with invariant mass
greater than 20 GeV, muon transverse momentum pT > 10 GeV and pseudorapidity |⌘| <
2.4, the cross-section is determined to be�excl.

��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb.
When proton absorptive e↵ects due to the finite size of the proton are taken into account in
the theory calculation, the measured cross-sections are found to be consistent with the theory
prediction.

c� 2015 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.
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Table 3: Definition of the electron and muon channel fiducial regions for which the exclusive cross-sections are
evaluated.

Variable Electron channel Muon channel
p`T > 12 GeV > 10 GeV
|⌘` | < 2.4 < 2.4
m`+`� > 24 GeV > 20 GeV

the standard dipole form-factors and the improved model parameterisation including pQCD corrections
from Ref. [60]. The latter includes a fit uncertainty and the prediction furthest away from the dipole
form-factors is chosen.

Similarly, for the µ+µ� channel,

Rexcl.
��!µ+µ� = 0.791 ± 0.041 (stat.) ± 0.026 (syst.) ± 0.013 (theor.) ,

�EPA
��!µ+µ� = 0.794 ± 0.013 (theor.) pb .

The resulting fiducial cross-section for the electron channel is measured to be

�excl.
��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb .

This value can be compared to the theoretical prediction, including absorptive corrections to account for
the finite size of the proton [10]:

�EPA, corr.
��!e+e� = 0.398 ± 0.007 (theor.) pb .

For the muon channel, the fiducial cross-section is measured to be

�excl.
��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb ,

to be compared with [10]:
�EPA, corr.
��!µ+µ� = 0.638 ± 0.011 (theor.) pb .

The uncertainty of each prediction includes an additional 0.8% uncertainty related to the modelling of
proton absorptive corrections. It is evaluated by varying the e↵ective transverse size of the proton by 3%,
according to Ref. [64]. Figure 4 shows the ratios of the measured cross-sections to the EPA calculations
and to the prediction with the inclusion of absorptive corrections. The measurements are in agreement
with the predicted values corrected for proton absorptive e↵ects. The figure includes a similar CMS
cross-section measurement [18].

8 Conclusion

Using 4.6 fb�1 of data from pp collisions at a centre-of-mass energy of 7 TeV the fiducial cross-sections
for exclusive �� ! `+`� (` = e, µ) reactions have been measured with the ATLAS detector at the
LHC. Comparisons are made to the theory predictions based on EPA calculations, as included in the Her-
wig++ MC generator. The corresponding data-to-EPA signal ratios for the electron and muon channels
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Rapidity Gaps

• Clean, ~ pure QED process: 

Photon collider search strategy for sleptons and dark matter at the LHC

Lydia Beresford1, ⇤ and Jesse Liu1, †

1Department of Physics, University of Oxford, Oxford OX1 3RH, UK

We propose a search strategy using the LHC as a photon collider to open sensitivity to scalar
lepton (slepton ˜̀) production with masses around 15 to 60 GeV above that of neutralino dark matter
�̃0
1. This region is favored by relic abundance and muon (g� 2)µ arguments. However, conventional

searches are hindered by the irreducible diboson background. We overcome this obstruction by
measuring initial state kinematics and the missing momentum four-vector in proton-tagged ultra-
peripheral collisions using forward detectors. We demonstrate sensitivity beyond LEP for slepton
masses of up to 220 GeV for 15 . �m(˜̀, �̃0

1) . 60 GeV with 100 fb�1 of 13 TeV proton collisions.
We encourage the LHC collaborations to open this forward frontier for discovering new physics.

I. INTRODUCTION

Elucidating the elementary properties of dark matter
(DM) is among the most urgent problems in fundamental
physics. The lightest neutralino �̃0

1 in supersymmetric
(SUSY) extensions of the Standard Model (SM) is one
of the most motivated DM candidates [1–3]. A favored
scenario involves scalar partners of the charged leptons
(sleptons ˜̀) being one to tens of GeV above the �̃0

1 mass.
This enables interactions that reduce the �̃0

1 cosmologi-
cal relic abundance to match the observed value [4] via a
mechanism called slepton coannihilation [5, 6]. Further-
more, partners of the muon (smuon µ̃) and neutralinos
with masses near the weak scale are a leading explana-
tion for 3 � 4� deviations between measurements of the
muon magnetic moment and SM prediction [7–10].

Remarkably, Large Hadron Collider (LHC) searches
for these key targets have no sensitivity when mass dif-
ferences are 15 . �m(˜̀, �̃0

1) . 60 GeV [11–14]. Here,
Large Electron Positron (LEP) collider limits remain the
most stringent, excluding m(˜̀) . 97 GeV [15–17]. Sen-
sitivity is hindered by an obstruction generic to all LHC
search strategies for invisible DM states and their me-
diators [18–29]: the kinematics of colliding quarks and
gluons are immeasurable. Without this initial state in-
formation, the missing momentum four-vector pmiss left
by DM can only be determined in the plane transverse
to the beam (pmiss

T ). This precludes direct DM mass re-
construction that would otherwise provide e↵ective dis-
crimination against neutrino ⌫ backgrounds.

This Letter proposes a search strategy to resolve these
longstanding problems by using the LHC as a photon col-
lider [30]. In a beam crossing, protons can undergo an
ultraperipheral collision (UPC), where photons from the
electromagnetic fields interact to produce sleptons exclu-
sively pp ! p(�� ! ˜̀̀̃ )p. The sleptons decay as ˜̀! `�̃0

1,
resulting in the very clean final state p(2` + pmiss)p of
our search: two intact protons, two leptons `, and miss-
ing momentum (Fig. 1). As the beam energy is known,
measuring the outgoing proton kinematics determines
the colliding photon momenta and thus pmiss. This ex-
perimental possibility is opened by the ATLAS Forward
Proton (AFP) [31] and CMS–TOTEM Precision Proton
Spectrometer (CT-PPS) [32, 33] forward detectors, which
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FIG. 8. Exclusive pair-production of sleptons ˜̀ via photon–photon fusion. Each slepton decays
directly to a lepton and neutralino �̃0
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FIG. 8. Exclusive pair-production of W boson pairs via photon–photon fusion in the `⌫`⌫ final
state.

FIG. 1. Exclusive pair production of (left) scalar leptons ‘slep-
tons’ ˜̀ decaying to dark matter �̃0

1 and (right) SM diboson
WW background using the LHC as a photon collider.

recorded first data in 2017 and 2016 respectively. CMS–
TOTEM moreover observed double lepton production in
high-luminosity proton-tagged events [34], demonstrat-
ing initial state reconstruction is feasible.

Photon collisions at the LHC reach su�cient rates to
probe rare processes such as SM light-by-light scatter-
ing [35, 36], anomalous gauge couplings [37, 38], and
axion-like particles [39, 40]. Nonetheless, it is widely
considered that photon fusion production of sleptons
is not competitive as a discovery window compared to
electroweak production [11–14]; existing photon collider
studies therefore focus on slepton mass measurement for
specific benchmark points [41–45]. Our proposal argues
the contrary that photon collisions play an essential role
in SUSY and DM searches. We emulate AFP/CT-PPS
proton tagging, which enables powerful background sup-
pression. We demonstrate a strategy that surpasses LEP
sensitivity in the favored 15 . �m(˜̀, �̃0

1) . 60 GeV cor-
ridor, underscoring the importance of initial state kine-
matics and pmiss for the LHC discovery program.

II. PHOTON COLLIDER SIMULATION

Electromagnetic fields surrounding ultrarelativistic
protons can be modeled as a beam of nearly on-shell pho-
tons, which is known as the equivalent photon approxi-
mation [46]. We consider pair production of electrically
charged particles X via photon fusion �� ! XX. An-
alytic expressions of their QED cross-sections ���!XX

ar
X

iv
:1

81
1.

06
46

5v
1 

 [h
ep

-p
h]

  1
5 

N
ov

 2
01

8

Figure 1: Anomalous �Z production via photon fusion with intact protons in the final state.

The operators of Eq. (2.1) induce an anomalous Z ! ��� decay [29], with a partial width that
in our notation reads

�NP(Z ! ���) =
m9

Z(2⇣
2 + 2⇣̃2 � ⇣⇣̃)

8640⇡3
. (2.2)

An anomalous �� ! �Z reaction is also induced, which is the focus of this work. We find the
unpolarized differential cross section to be 1

d�NP
��!�Z

d⌦
=

�

16⇡2s

h
(3⇣2 + 3⇣̃2 � 2⇣⇣̃)(st+ tu+ us)2 � 4(⇣2 + ⇣̃2 � ⇣⇣̃)2m2

Zstu
i
, (2.3)

where s, t, and u are the usual Mandelstam variables and � = 1�m2
Z/s for the �Z final state.

As the EFT is nonrenormalizable, a breakdown of unitarity is expected at high energies. Using
the well-known partial wave analysis [30] we can estimate for what values of ⇣, ⇣̃ and s the theory
remains unitary. By imposing unitarity on the S-wave of the EFT amplitudes and neglecting the
Z boson mass one finds the conditions (see [4] for details on similar amplitudes)

|⇣ + ⇣̃|s2 < 4⇡ , |⇣ � ⇣̃|s2 <
12⇡

5
. (2.4)

As most of the recorded �Z events have
p
s below 1 TeV, we expect the EFT to remain unitary for

couplings up to
⇣, ⇣̃ < (10�12

� 10�11) GeV�4 . (2.5)

The sensitivities we will derive in Sec. 7 are much lower than these unitarity bounds. However, as a
caveat, we stress that unless the underlying New Physics model is very strongly coupled, the EFT
typically breaks down before unitarity is violated.

3 Contributions from New Physics

Loops of heavy particles charged under SU(2)L ⇥ U(1)Y contribute to the ���Z couplings. These
loop contributions only depend on the mass and quantum numbers of the particle in the loop and
can thus be given in full generality. Denoting hypercharge by Y , sine and cosine of the Weinberg
angle by sw and cw and labeling the SU(2)L representation by its dimension d, we can write [4]

⇣
⇣, ⇣̃

⌘
=

⇣
cs, c̃s

⌘ ↵2
em

swcw m4
d

✓
c2w

3d4 � 10d2 + 7

240
+ (c2w � s2w)

(d2 � 1)Y 2

4
� s2wY

4

◆
, (3.1)

1
It has been noted in [29] that the operators O± = O

�Z
± Õ

�Z
do not interfere. This property provides

a cross check of our result Eq. (2.3), as in this basis we get ⇣± = ⇣ ± ⇣̃, (3⇣2 + 3⇣̃2 � 2⇣⇣̃) = ⇣2+ + 2⇣2� and

4(⇣2 + ⇣̃2 � ⇣⇣̃) = ⇣2+ + 3⇣2� , hence a vanishing interference.

3

PI Production: Relevance @ LHC 

 3

• Exclusive/semi-exclusive production: colour singlet photon naturally leads 
to events with intact protons/rapidity gaps in final state.
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Measurement of exclusive �� ! `+`� production in proton–proton
collisions at

p
s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter reports a measurement of the exclusive �� ! `+`� (` = e, µ) cross-section in
proton–proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment
at the LHC, based on an integrated luminosity of 4.6 fb�1. For the electron or muon pairs
satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to
extract the fiducial cross-sections. The cross-section in the electron channel is determined to
be�excl.

��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb for a phase-space region with invariant
mass of the electron pairs greater than 24 GeV, in which both electrons have transverse
momentum pT > 12 GeV and pseudorapidity |⌘| < 2.4. For muon pairs with invariant mass
greater than 20 GeV, muon transverse momentum pT > 10 GeV and pseudorapidity |⌘| <
2.4, the cross-section is determined to be�excl.

��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb.
When proton absorptive e↵ects due to the finite size of the proton are taken into account in
the theory calculation, the measured cross-sections are found to be consistent with the theory
prediction.

c� 2015 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.

ar
X

iv
:1

50
6.

07
09

8v
2 

 [h
ep

-e
x]

  1
7 

A
ug

 2
01

5

Table 3: Definition of the electron and muon channel fiducial regions for which the exclusive cross-sections are
evaluated.

Variable Electron channel Muon channel
p`T > 12 GeV > 10 GeV
|⌘` | < 2.4 < 2.4
m`+`� > 24 GeV > 20 GeV

the standard dipole form-factors and the improved model parameterisation including pQCD corrections
from Ref. [60]. The latter includes a fit uncertainty and the prediction furthest away from the dipole
form-factors is chosen.

Similarly, for the µ+µ� channel,

Rexcl.
��!µ+µ� = 0.791 ± 0.041 (stat.) ± 0.026 (syst.) ± 0.013 (theor.) ,

�EPA
��!µ+µ� = 0.794 ± 0.013 (theor.) pb .

The resulting fiducial cross-section for the electron channel is measured to be

�excl.
��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb .

This value can be compared to the theoretical prediction, including absorptive corrections to account for
the finite size of the proton [10]:

�EPA, corr.
��!e+e� = 0.398 ± 0.007 (theor.) pb .

For the muon channel, the fiducial cross-section is measured to be

�excl.
��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb ,

to be compared with [10]:
�EPA, corr.
��!µ+µ� = 0.638 ± 0.011 (theor.) pb .

The uncertainty of each prediction includes an additional 0.8% uncertainty related to the modelling of
proton absorptive corrections. It is evaluated by varying the e↵ective transverse size of the proton by 3%,
according to Ref. [64]. Figure 4 shows the ratios of the measured cross-sections to the EPA calculations
and to the prediction with the inclusion of absorptive corrections. The measurements are in agreement
with the predicted values corrected for proton absorptive e↵ects. The figure includes a similar CMS
cross-section measurement [18].

8 Conclusion

Using 4.6 fb�1 of data from pp collisions at a centre-of-mass energy of 7 TeV the fiducial cross-sections
for exclusive �� ! `+`� (` = e, µ) reactions have been measured with the ATLAS detector at the
LHC. Comparisons are made to the theory predictions based on EPA calculations, as included in the Her-
wig++ MC generator. The corresponding data-to-EPA signal ratios for the electron and muon channels
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Why bother?
• In era of high precision phenomenology at the LHC: NNLO 
calculations rapidly becoming the ‘standard’. However:

• Thus at this level of accuracy, must consider a proper account of 
EW corrections. At LHC these can be relevant for a range of 
processes (                                                         ).

↵2
S(MZ) ⇠ 0.1182 ⇠ 1

70
↵QED(MZ) ⇠

1

130

! EW and NNLO QCD corrections can be comparable in size.

W , Z, WH, ZH, WW , tt, jets...

R

• For consistent treatment of these, must 
incorporate QED in initial state: photon-
initiated production.

X Rapidity Gaps

• Clean, ~ pure QED process at LHC:

� Probe of BSM (anomalous couplings, ALPs, 
SUSY…). LHL et al., JHEP 1904 (2019) 010, EPJC 72 (2012) 1969, C. 

Baldenegro et al., JHEP 1806 (2018) 131, JHEP 1706 (2017) 
141, L. Beresford and J. Liu, arXiv:1908.05180, PRL 123 
(2019) no.14, 141801…

Photon collider search strategy for sleptons and dark matter at the LHC

Lydia Beresford1, ⇤ and Jesse Liu1, †

1Department of Physics, University of Oxford, Oxford OX1 3RH, UK

We propose a search strategy using the LHC as a photon collider to open sensitivity to scalar
lepton (slepton ˜̀) production with masses around 15 to 60 GeV above that of neutralino dark matter
�̃0
1. This region is favored by relic abundance and muon (g� 2)µ arguments. However, conventional

searches are hindered by the irreducible diboson background. We overcome this obstruction by
measuring initial state kinematics and the missing momentum four-vector in proton-tagged ultra-
peripheral collisions using forward detectors. We demonstrate sensitivity beyond LEP for slepton
masses of up to 220 GeV for 15 . �m(˜̀, �̃0

1) . 60 GeV with 100 fb�1 of 13 TeV proton collisions.
We encourage the LHC collaborations to open this forward frontier for discovering new physics.

I. INTRODUCTION

Elucidating the elementary properties of dark matter
(DM) is among the most urgent problems in fundamental
physics. The lightest neutralino �̃0

1 in supersymmetric
(SUSY) extensions of the Standard Model (SM) is one
of the most motivated DM candidates [1–3]. A favored
scenario involves scalar partners of the charged leptons
(sleptons ˜̀) being one to tens of GeV above the �̃0

1 mass.
This enables interactions that reduce the �̃0

1 cosmologi-
cal relic abundance to match the observed value [4] via a
mechanism called slepton coannihilation [5, 6]. Further-
more, partners of the muon (smuon µ̃) and neutralinos
with masses near the weak scale are a leading explana-
tion for 3 � 4� deviations between measurements of the
muon magnetic moment and SM prediction [7–10].

Remarkably, Large Hadron Collider (LHC) searches
for these key targets have no sensitivity when mass dif-
ferences are 15 . �m(˜̀, �̃0

1) . 60 GeV [11–14]. Here,
Large Electron Positron (LEP) collider limits remain the
most stringent, excluding m(˜̀) . 97 GeV [15–17]. Sen-
sitivity is hindered by an obstruction generic to all LHC
search strategies for invisible DM states and their me-
diators [18–29]: the kinematics of colliding quarks and
gluons are immeasurable. Without this initial state in-
formation, the missing momentum four-vector pmiss left
by DM can only be determined in the plane transverse
to the beam (pmiss

T ). This precludes direct DM mass re-
construction that would otherwise provide e↵ective dis-
crimination against neutrino ⌫ backgrounds.

This Letter proposes a search strategy to resolve these
longstanding problems by using the LHC as a photon col-
lider [30]. In a beam crossing, protons can undergo an
ultraperipheral collision (UPC), where photons from the
electromagnetic fields interact to produce sleptons exclu-
sively pp ! p(�� ! ˜̀̀̃ )p. The sleptons decay as ˜̀! `�̃0

1,
resulting in the very clean final state p(2` + pmiss)p of
our search: two intact protons, two leptons `, and miss-
ing momentum (Fig. 1). As the beam energy is known,
measuring the outgoing proton kinematics determines
the colliding photon momenta and thus pmiss. This ex-
perimental possibility is opened by the ATLAS Forward
Proton (AFP) [31] and CMS–TOTEM Precision Proton
Spectrometer (CT-PPS) [32, 33] forward detectors, which
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FIG. 8. Exclusive pair-production of sleptons ˜̀ via photon–photon fusion. Each slepton decays
directly to a lepton and neutralino �̃0
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FIG. 8. Exclusive pair-production of W boson pairs via photon–photon fusion in the `⌫`⌫ final
state.

FIG. 1. Exclusive pair production of (left) scalar leptons ‘slep-
tons’ ˜̀ decaying to dark matter �̃0

1 and (right) SM diboson
WW background using the LHC as a photon collider.

recorded first data in 2017 and 2016 respectively. CMS–
TOTEM moreover observed double lepton production in
high-luminosity proton-tagged events [34], demonstrat-
ing initial state reconstruction is feasible.

Photon collisions at the LHC reach su�cient rates to
probe rare processes such as SM light-by-light scatter-
ing [35, 36], anomalous gauge couplings [37, 38], and
axion-like particles [39, 40]. Nonetheless, it is widely
considered that photon fusion production of sleptons
is not competitive as a discovery window compared to
electroweak production [11–14]; existing photon collider
studies therefore focus on slepton mass measurement for
specific benchmark points [41–45]. Our proposal argues
the contrary that photon collisions play an essential role
in SUSY and DM searches. We emulate AFP/CT-PPS
proton tagging, which enables powerful background sup-
pression. We demonstrate a strategy that surpasses LEP
sensitivity in the favored 15 . �m(˜̀, �̃0

1) . 60 GeV cor-
ridor, underscoring the importance of initial state kine-
matics and pmiss for the LHC discovery program.

II. PHOTON COLLIDER SIMULATION

Electromagnetic fields surrounding ultrarelativistic
protons can be modeled as a beam of nearly on-shell pho-
tons, which is known as the equivalent photon approxi-
mation [46]. We consider pair production of electrically
charged particles X via photon fusion �� ! XX. An-
alytic expressions of their QED cross-sections ���!XX
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Figure 1: Anomalous �Z production via photon fusion with intact protons in the final state.

The operators of Eq. (2.1) induce an anomalous Z ! ��� decay [29], with a partial width that
in our notation reads

�NP(Z ! ���) =
m9

Z(2⇣
2 + 2⇣̃2 � ⇣⇣̃)

8640⇡3
. (2.2)

An anomalous �� ! �Z reaction is also induced, which is the focus of this work. We find the
unpolarized differential cross section to be 1

d�NP
��!�Z

d⌦
=

�

16⇡2s

h
(3⇣2 + 3⇣̃2 � 2⇣⇣̃)(st+ tu+ us)2 � 4(⇣2 + ⇣̃2 � ⇣⇣̃)2m2

Zstu
i
, (2.3)

where s, t, and u are the usual Mandelstam variables and � = 1�m2
Z/s for the �Z final state.

As the EFT is nonrenormalizable, a breakdown of unitarity is expected at high energies. Using
the well-known partial wave analysis [30] we can estimate for what values of ⇣, ⇣̃ and s the theory
remains unitary. By imposing unitarity on the S-wave of the EFT amplitudes and neglecting the
Z boson mass one finds the conditions (see [4] for details on similar amplitudes)

|⇣ + ⇣̃|s2 < 4⇡ , |⇣ � ⇣̃|s2 <
12⇡

5
. (2.4)

As most of the recorded �Z events have
p
s below 1 TeV, we expect the EFT to remain unitary for

couplings up to
⇣, ⇣̃ < (10�12

� 10�11) GeV�4 . (2.5)

The sensitivities we will derive in Sec. 7 are much lower than these unitarity bounds. However, as a
caveat, we stress that unless the underlying New Physics model is very strongly coupled, the EFT
typically breaks down before unitarity is violated.

3 Contributions from New Physics

Loops of heavy particles charged under SU(2)L ⇥ U(1)Y contribute to the ���Z couplings. These
loop contributions only depend on the mass and quantum numbers of the particle in the loop and
can thus be given in full generality. Denoting hypercharge by Y , sine and cosine of the Weinberg
angle by sw and cw and labeling the SU(2)L representation by its dimension d, we can write [4]

⇣
⇣, ⇣̃

⌘
=

⇣
cs, c̃s

⌘ ↵2
em

swcw m4
d

✓
c2w

3d4 � 10d2 + 7

240
+ (c2w � s2w)

(d2 � 1)Y 2

4
� s2wY

4

◆
, (3.1)

1
It has been noted in [29] that the operators O± = O

�Z
± Õ

�Z
do not interfere. This property provides

a cross check of our result Eq. (2.3), as in this basis we get ⇣± = ⇣ ± ⇣̃, (3⇣2 + 3⇣̃2 � 2⇣⇣̃) = ⇣2+ + 2⇣2� and

4(⇣2 + ⇣̃2 � ⇣⇣̃) = ⇣2+ + 3⇣2� , hence a vanishing interference.

3
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to events with intact protons/rapidity gaps in final state.
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Submitted to: Phys. Lett. B. CERN-PH-EP-2015-134
18th August 2015

Measurement of exclusive �� ! `+`� production in proton–proton
collisions at

p
s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter reports a measurement of the exclusive �� ! `+`� (` = e, µ) cross-section in
proton–proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment
at the LHC, based on an integrated luminosity of 4.6 fb�1. For the electron or muon pairs
satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to
extract the fiducial cross-sections. The cross-section in the electron channel is determined to
be�excl.

��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb for a phase-space region with invariant
mass of the electron pairs greater than 24 GeV, in which both electrons have transverse
momentum pT > 12 GeV and pseudorapidity |⌘| < 2.4. For muon pairs with invariant mass
greater than 20 GeV, muon transverse momentum pT > 10 GeV and pseudorapidity |⌘| <
2.4, the cross-section is determined to be�excl.

��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb.
When proton absorptive e↵ects due to the finite size of the proton are taken into account in
the theory calculation, the measured cross-sections are found to be consistent with the theory
prediction.

c� 2015 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.
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Table 3: Definition of the electron and muon channel fiducial regions for which the exclusive cross-sections are
evaluated.

Variable Electron channel Muon channel
p`T > 12 GeV > 10 GeV
|⌘` | < 2.4 < 2.4
m`+`� > 24 GeV > 20 GeV

the standard dipole form-factors and the improved model parameterisation including pQCD corrections
from Ref. [60]. The latter includes a fit uncertainty and the prediction furthest away from the dipole
form-factors is chosen.

Similarly, for the µ+µ� channel,

Rexcl.
��!µ+µ� = 0.791 ± 0.041 (stat.) ± 0.026 (syst.) ± 0.013 (theor.) ,

�EPA
��!µ+µ� = 0.794 ± 0.013 (theor.) pb .

The resulting fiducial cross-section for the electron channel is measured to be

�excl.
��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb .

This value can be compared to the theoretical prediction, including absorptive corrections to account for
the finite size of the proton [10]:

�EPA, corr.
��!e+e� = 0.398 ± 0.007 (theor.) pb .

For the muon channel, the fiducial cross-section is measured to be

�excl.
��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb ,

to be compared with [10]:
�EPA, corr.
��!µ+µ� = 0.638 ± 0.011 (theor.) pb .

The uncertainty of each prediction includes an additional 0.8% uncertainty related to the modelling of
proton absorptive corrections. It is evaluated by varying the e↵ective transverse size of the proton by 3%,
according to Ref. [64]. Figure 4 shows the ratios of the measured cross-sections to the EPA calculations
and to the prediction with the inclusion of absorptive corrections. The measurements are in agreement
with the predicted values corrected for proton absorptive e↵ects. The figure includes a similar CMS
cross-section measurement [18].

8 Conclusion

Using 4.6 fb�1 of data from pp collisions at a centre-of-mass energy of 7 TeV the fiducial cross-sections
for exclusive �� ! `+`� (` = e, µ) reactions have been measured with the ATLAS detector at the
LHC. Comparisons are made to the theory predictions based on EPA calculations, as included in the Her-
wig++ MC generator. The corresponding data-to-EPA signal ratios for the electron and muon channels
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Photon collider search strategy for sleptons and dark matter at the LHC

Lydia Beresford1, ⇤ and Jesse Liu1, †

1Department of Physics, University of Oxford, Oxford OX1 3RH, UK

We propose a search strategy using the LHC as a photon collider to open sensitivity to scalar
lepton (slepton ˜̀) production with masses around 15 to 60 GeV above that of neutralino dark matter
�̃0
1. This region is favored by relic abundance and muon (g� 2)µ arguments. However, conventional

searches are hindered by the irreducible diboson background. We overcome this obstruction by
measuring initial state kinematics and the missing momentum four-vector in proton-tagged ultra-
peripheral collisions using forward detectors. We demonstrate sensitivity beyond LEP for slepton
masses of up to 220 GeV for 15 . �m(˜̀, �̃0

1) . 60 GeV with 100 fb�1 of 13 TeV proton collisions.
We encourage the LHC collaborations to open this forward frontier for discovering new physics.

I. INTRODUCTION

Elucidating the elementary properties of dark matter
(DM) is among the most urgent problems in fundamental
physics. The lightest neutralino �̃0

1 in supersymmetric
(SUSY) extensions of the Standard Model (SM) is one
of the most motivated DM candidates [1–3]. A favored
scenario involves scalar partners of the charged leptons
(sleptons ˜̀) being one to tens of GeV above the �̃0

1 mass.
This enables interactions that reduce the �̃0

1 cosmologi-
cal relic abundance to match the observed value [4] via a
mechanism called slepton coannihilation [5, 6]. Further-
more, partners of the muon (smuon µ̃) and neutralinos
with masses near the weak scale are a leading explana-
tion for 3 � 4� deviations between measurements of the
muon magnetic moment and SM prediction [7–10].

Remarkably, Large Hadron Collider (LHC) searches
for these key targets have no sensitivity when mass dif-
ferences are 15 . �m(˜̀, �̃0

1) . 60 GeV [11–14]. Here,
Large Electron Positron (LEP) collider limits remain the
most stringent, excluding m(˜̀) . 97 GeV [15–17]. Sen-
sitivity is hindered by an obstruction generic to all LHC
search strategies for invisible DM states and their me-
diators [18–29]: the kinematics of colliding quarks and
gluons are immeasurable. Without this initial state in-
formation, the missing momentum four-vector pmiss left
by DM can only be determined in the plane transverse
to the beam (pmiss

T ). This precludes direct DM mass re-
construction that would otherwise provide e↵ective dis-
crimination against neutrino ⌫ backgrounds.

This Letter proposes a search strategy to resolve these
longstanding problems by using the LHC as a photon col-
lider [30]. In a beam crossing, protons can undergo an
ultraperipheral collision (UPC), where photons from the
electromagnetic fields interact to produce sleptons exclu-
sively pp ! p(�� ! ˜̀̀̃ )p. The sleptons decay as ˜̀! `�̃0

1,
resulting in the very clean final state p(2` + pmiss)p of
our search: two intact protons, two leptons `, and miss-
ing momentum (Fig. 1). As the beam energy is known,
measuring the outgoing proton kinematics determines
the colliding photon momenta and thus pmiss. This ex-
perimental possibility is opened by the ATLAS Forward
Proton (AFP) [31] and CMS–TOTEM Precision Proton
Spectrometer (CT-PPS) [32, 33] forward detectors, which
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FIG. 8. Exclusive pair-production of W boson pairs via photon–photon fusion in the `⌫`⌫ final
state.

FIG. 1. Exclusive pair production of (left) scalar leptons ‘slep-
tons’ ˜̀ decaying to dark matter �̃0

1 and (right) SM diboson
WW background using the LHC as a photon collider.

recorded first data in 2017 and 2016 respectively. CMS–
TOTEM moreover observed double lepton production in
high-luminosity proton-tagged events [34], demonstrat-
ing initial state reconstruction is feasible.

Photon collisions at the LHC reach su�cient rates to
probe rare processes such as SM light-by-light scatter-
ing [35, 36], anomalous gauge couplings [37, 38], and
axion-like particles [39, 40]. Nonetheless, it is widely
considered that photon fusion production of sleptons
is not competitive as a discovery window compared to
electroweak production [11–14]; existing photon collider
studies therefore focus on slepton mass measurement for
specific benchmark points [41–45]. Our proposal argues
the contrary that photon collisions play an essential role
in SUSY and DM searches. We emulate AFP/CT-PPS
proton tagging, which enables powerful background sup-
pression. We demonstrate a strategy that surpasses LEP
sensitivity in the favored 15 . �m(˜̀, �̃0

1) . 60 GeV cor-
ridor, underscoring the importance of initial state kine-
matics and pmiss for the LHC discovery program.

II. PHOTON COLLIDER SIMULATION

Electromagnetic fields surrounding ultrarelativistic
protons can be modeled as a beam of nearly on-shell pho-
tons, which is known as the equivalent photon approxi-
mation [46]. We consider pair production of electrically
charged particles X via photon fusion �� ! XX. An-
alytic expressions of their QED cross-sections ���!XX
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Figure 1: Anomalous �Z production via photon fusion with intact protons in the final state.

The operators of Eq. (2.1) induce an anomalous Z ! ��� decay [29], with a partial width that
in our notation reads

�NP(Z ! ���) =
m9

Z(2⇣
2 + 2⇣̃2 � ⇣⇣̃)

8640⇡3
. (2.2)

An anomalous �� ! �Z reaction is also induced, which is the focus of this work. We find the
unpolarized differential cross section to be 1

d�NP
��!�Z

d⌦
=

�

16⇡2s

h
(3⇣2 + 3⇣̃2 � 2⇣⇣̃)(st+ tu+ us)2 � 4(⇣2 + ⇣̃2 � ⇣⇣̃)2m2

Zstu
i
, (2.3)

where s, t, and u are the usual Mandelstam variables and � = 1�m2
Z/s for the �Z final state.

As the EFT is nonrenormalizable, a breakdown of unitarity is expected at high energies. Using
the well-known partial wave analysis [30] we can estimate for what values of ⇣, ⇣̃ and s the theory
remains unitary. By imposing unitarity on the S-wave of the EFT amplitudes and neglecting the
Z boson mass one finds the conditions (see [4] for details on similar amplitudes)

|⇣ + ⇣̃|s2 < 4⇡ , |⇣ � ⇣̃|s2 <
12⇡

5
. (2.4)

As most of the recorded �Z events have
p
s below 1 TeV, we expect the EFT to remain unitary for

couplings up to
⇣, ⇣̃ < (10�12

� 10�11) GeV�4 . (2.5)

The sensitivities we will derive in Sec. 7 are much lower than these unitarity bounds. However, as a
caveat, we stress that unless the underlying New Physics model is very strongly coupled, the EFT
typically breaks down before unitarity is violated.

3 Contributions from New Physics

Loops of heavy particles charged under SU(2)L ⇥ U(1)Y contribute to the ���Z couplings. These
loop contributions only depend on the mass and quantum numbers of the particle in the loop and
can thus be given in full generality. Denoting hypercharge by Y , sine and cosine of the Weinberg
angle by sw and cw and labeling the SU(2)L representation by its dimension d, we can write [4]

⇣
⇣, ⇣̃

⌘
=

⇣
cs, c̃s

⌘ ↵2
em

swcw m4
d

✓
c2w

3d4 � 10d2 + 7

240
+ (c2w � s2w)

(d2 � 1)Y 2

4
� s2wY

4

◆
, (3.1)

1
It has been noted in [29] that the operators O± = O

�Z
± Õ

�Z
do not interfere. This property provides

a cross check of our result Eq. (2.3), as in this basis we get ⇣± = ⇣ ± ⇣̃, (3⇣2 + 3⇣̃2 � 2⇣⇣̃) = ⇣2+ + 2⇣2� and

4(⇣2 + ⇣̃2 � ⇣⇣̃) = ⇣2+ + 3⇣2� , hence a vanishing interference.

3
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• Exclusive/semi-exclusive production: colour singlet photon naturally leads 
to events with intact protons/rapidity gaps in final state.
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Submitted to: Phys. Lett. B. CERN-PH-EP-2015-134
18th August 2015

Measurement of exclusive �� ! `+`� production in proton–proton
collisions at

p
s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter reports a measurement of the exclusive �� ! `+`� (` = e, µ) cross-section in
proton–proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment
at the LHC, based on an integrated luminosity of 4.6 fb�1. For the electron or muon pairs
satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to
extract the fiducial cross-sections. The cross-section in the electron channel is determined to
be�excl.

��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb for a phase-space region with invariant
mass of the electron pairs greater than 24 GeV, in which both electrons have transverse
momentum pT > 12 GeV and pseudorapidity |⌘| < 2.4. For muon pairs with invariant mass
greater than 20 GeV, muon transverse momentum pT > 10 GeV and pseudorapidity |⌘| <
2.4, the cross-section is determined to be�excl.

��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb.
When proton absorptive e↵ects due to the finite size of the proton are taken into account in
the theory calculation, the measured cross-sections are found to be consistent with the theory
prediction.

c� 2015 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.
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Table 3: Definition of the electron and muon channel fiducial regions for which the exclusive cross-sections are
evaluated.

Variable Electron channel Muon channel
p`T > 12 GeV > 10 GeV
|⌘` | < 2.4 < 2.4
m`+`� > 24 GeV > 20 GeV

the standard dipole form-factors and the improved model parameterisation including pQCD corrections
from Ref. [60]. The latter includes a fit uncertainty and the prediction furthest away from the dipole
form-factors is chosen.

Similarly, for the µ+µ� channel,

Rexcl.
��!µ+µ� = 0.791 ± 0.041 (stat.) ± 0.026 (syst.) ± 0.013 (theor.) ,

�EPA
��!µ+µ� = 0.794 ± 0.013 (theor.) pb .

The resulting fiducial cross-section for the electron channel is measured to be

�excl.
��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb .

This value can be compared to the theoretical prediction, including absorptive corrections to account for
the finite size of the proton [10]:

�EPA, corr.
��!e+e� = 0.398 ± 0.007 (theor.) pb .

For the muon channel, the fiducial cross-section is measured to be

�excl.
��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb ,

to be compared with [10]:
�EPA, corr.
��!µ+µ� = 0.638 ± 0.011 (theor.) pb .

The uncertainty of each prediction includes an additional 0.8% uncertainty related to the modelling of
proton absorptive corrections. It is evaluated by varying the e↵ective transverse size of the proton by 3%,
according to Ref. [64]. Figure 4 shows the ratios of the measured cross-sections to the EPA calculations
and to the prediction with the inclusion of absorptive corrections. The measurements are in agreement
with the predicted values corrected for proton absorptive e↵ects. The figure includes a similar CMS
cross-section measurement [18].

8 Conclusion

Using 4.6 fb�1 of data from pp collisions at a centre-of-mass energy of 7 TeV the fiducial cross-sections
for exclusive �� ! `+`� (` = e, µ) reactions have been measured with the ATLAS detector at the
LHC. Comparisons are made to the theory predictions based on EPA calculations, as included in the Her-
wig++ MC generator. The corresponding data-to-EPA signal ratios for the electron and muon channels
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Photon collider search strategy for sleptons and dark matter at the LHC

Lydia Beresford1, ⇤ and Jesse Liu1, †

1Department of Physics, University of Oxford, Oxford OX1 3RH, UK

We propose a search strategy using the LHC as a photon collider to open sensitivity to scalar
lepton (slepton ˜̀) production with masses around 15 to 60 GeV above that of neutralino dark matter
�̃0
1. This region is favored by relic abundance and muon (g� 2)µ arguments. However, conventional

searches are hindered by the irreducible diboson background. We overcome this obstruction by
measuring initial state kinematics and the missing momentum four-vector in proton-tagged ultra-
peripheral collisions using forward detectors. We demonstrate sensitivity beyond LEP for slepton
masses of up to 220 GeV for 15 . �m(˜̀, �̃0

1) . 60 GeV with 100 fb�1 of 13 TeV proton collisions.
We encourage the LHC collaborations to open this forward frontier for discovering new physics.

I. INTRODUCTION

Elucidating the elementary properties of dark matter
(DM) is among the most urgent problems in fundamental
physics. The lightest neutralino �̃0

1 in supersymmetric
(SUSY) extensions of the Standard Model (SM) is one
of the most motivated DM candidates [1–3]. A favored
scenario involves scalar partners of the charged leptons
(sleptons ˜̀) being one to tens of GeV above the �̃0

1 mass.
This enables interactions that reduce the �̃0

1 cosmologi-
cal relic abundance to match the observed value [4] via a
mechanism called slepton coannihilation [5, 6]. Further-
more, partners of the muon (smuon µ̃) and neutralinos
with masses near the weak scale are a leading explana-
tion for 3 � 4� deviations between measurements of the
muon magnetic moment and SM prediction [7–10].

Remarkably, Large Hadron Collider (LHC) searches
for these key targets have no sensitivity when mass dif-
ferences are 15 . �m(˜̀, �̃0

1) . 60 GeV [11–14]. Here,
Large Electron Positron (LEP) collider limits remain the
most stringent, excluding m(˜̀) . 97 GeV [15–17]. Sen-
sitivity is hindered by an obstruction generic to all LHC
search strategies for invisible DM states and their me-
diators [18–29]: the kinematics of colliding quarks and
gluons are immeasurable. Without this initial state in-
formation, the missing momentum four-vector pmiss left
by DM can only be determined in the plane transverse
to the beam (pmiss

T ). This precludes direct DM mass re-
construction that would otherwise provide e↵ective dis-
crimination against neutrino ⌫ backgrounds.

This Letter proposes a search strategy to resolve these
longstanding problems by using the LHC as a photon col-
lider [30]. In a beam crossing, protons can undergo an
ultraperipheral collision (UPC), where photons from the
electromagnetic fields interact to produce sleptons exclu-
sively pp ! p(�� ! ˜̀̀̃ )p. The sleptons decay as ˜̀! `�̃0

1,
resulting in the very clean final state p(2` + pmiss)p of
our search: two intact protons, two leptons `, and miss-
ing momentum (Fig. 1). As the beam energy is known,
measuring the outgoing proton kinematics determines
the colliding photon momenta and thus pmiss. This ex-
perimental possibility is opened by the ATLAS Forward
Proton (AFP) [31] and CMS–TOTEM Precision Proton
Spectrometer (CT-PPS) [32, 33] forward detectors, which
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FIG. 8. Exclusive pair-production of sleptons ˜̀ via photon–photon fusion. Each slepton decays
directly to a lepton and neutralino �̃0
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FIG. 8. Exclusive pair-production of W boson pairs via photon–photon fusion in the `⌫`⌫ final
state.

FIG. 1. Exclusive pair production of (left) scalar leptons ‘slep-
tons’ ˜̀ decaying to dark matter �̃0

1 and (right) SM diboson
WW background using the LHC as a photon collider.

recorded first data in 2017 and 2016 respectively. CMS–
TOTEM moreover observed double lepton production in
high-luminosity proton-tagged events [34], demonstrat-
ing initial state reconstruction is feasible.

Photon collisions at the LHC reach su�cient rates to
probe rare processes such as SM light-by-light scatter-
ing [35, 36], anomalous gauge couplings [37, 38], and
axion-like particles [39, 40]. Nonetheless, it is widely
considered that photon fusion production of sleptons
is not competitive as a discovery window compared to
electroweak production [11–14]; existing photon collider
studies therefore focus on slepton mass measurement for
specific benchmark points [41–45]. Our proposal argues
the contrary that photon collisions play an essential role
in SUSY and DM searches. We emulate AFP/CT-PPS
proton tagging, which enables powerful background sup-
pression. We demonstrate a strategy that surpasses LEP
sensitivity in the favored 15 . �m(˜̀, �̃0

1) . 60 GeV cor-
ridor, underscoring the importance of initial state kine-
matics and pmiss for the LHC discovery program.

II. PHOTON COLLIDER SIMULATION

Electromagnetic fields surrounding ultrarelativistic
protons can be modeled as a beam of nearly on-shell pho-
tons, which is known as the equivalent photon approxi-
mation [46]. We consider pair production of electrically
charged particles X via photon fusion �� ! XX. An-
alytic expressions of their QED cross-sections ���!XX
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Figure 1: Anomalous �Z production via photon fusion with intact protons in the final state.

The operators of Eq. (2.1) induce an anomalous Z ! ��� decay [29], with a partial width that
in our notation reads

�NP(Z ! ���) =
m9

Z(2⇣
2 + 2⇣̃2 � ⇣⇣̃)

8640⇡3
. (2.2)

An anomalous �� ! �Z reaction is also induced, which is the focus of this work. We find the
unpolarized differential cross section to be 1

d�NP
��!�Z

d⌦
=

�

16⇡2s

h
(3⇣2 + 3⇣̃2 � 2⇣⇣̃)(st+ tu+ us)2 � 4(⇣2 + ⇣̃2 � ⇣⇣̃)2m2

Zstu
i
, (2.3)

where s, t, and u are the usual Mandelstam variables and � = 1�m2
Z/s for the �Z final state.

As the EFT is nonrenormalizable, a breakdown of unitarity is expected at high energies. Using
the well-known partial wave analysis [30] we can estimate for what values of ⇣, ⇣̃ and s the theory
remains unitary. By imposing unitarity on the S-wave of the EFT amplitudes and neglecting the
Z boson mass one finds the conditions (see [4] for details on similar amplitudes)

|⇣ + ⇣̃|s2 < 4⇡ , |⇣ � ⇣̃|s2 <
12⇡

5
. (2.4)

As most of the recorded �Z events have
p
s below 1 TeV, we expect the EFT to remain unitary for

couplings up to
⇣, ⇣̃ < (10�12

� 10�11) GeV�4 . (2.5)

The sensitivities we will derive in Sec. 7 are much lower than these unitarity bounds. However, as a
caveat, we stress that unless the underlying New Physics model is very strongly coupled, the EFT
typically breaks down before unitarity is violated.

3 Contributions from New Physics

Loops of heavy particles charged under SU(2)L ⇥ U(1)Y contribute to the ���Z couplings. These
loop contributions only depend on the mass and quantum numbers of the particle in the loop and
can thus be given in full generality. Denoting hypercharge by Y , sine and cosine of the Weinberg
angle by sw and cw and labeling the SU(2)L representation by its dimension d, we can write [4]

⇣
⇣, ⇣̃

⌘
=

⇣
cs, c̃s

⌘ ↵2
em

swcw m4
d

✓
c2w

3d4 � 10d2 + 7

240
+ (c2w � s2w)

(d2 � 1)Y 2

4
� s2wY

4

◆
, (3.1)

1
It has been noted in [29] that the operators O± = O

�Z
± Õ

�Z
do not interfere. This property provides

a cross check of our result Eq. (2.3), as in this basis we get ⇣± = ⇣ ± ⇣̃, (3⇣2 + 3⇣̃2 � 2⇣⇣̃) = ⇣2+ + 2⇣2� and

4(⇣2 + ⇣̃2 � ⇣⇣̃) = ⇣2+ + 3⇣2� , hence a vanishing interference.

3
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Photon collider search strategy for sleptons and dark matter at the LHC
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We propose a search strategy using the LHC as a photon collider to open sensitivity to scalar
lepton (slepton ˜̀) production with masses around 15 to 60 GeV above that of neutralino dark matter
�̃0
1. This region is favored by relic abundance and muon (g� 2)µ arguments. However, conventional

searches are hindered by the irreducible diboson background. We overcome this obstruction by
measuring initial state kinematics and the missing momentum four-vector in proton-tagged ultra-
peripheral collisions using forward detectors. We demonstrate sensitivity beyond LEP for slepton
masses of up to 220 GeV for 15 . �m(˜̀, �̃0

1) . 60 GeV with 100 fb�1 of 13 TeV proton collisions.
We encourage the LHC collaborations to open this forward frontier for discovering new physics.

I. INTRODUCTION

Elucidating the elementary properties of dark matter
(DM) is among the most urgent problems in fundamental
physics. The lightest neutralino �̃0

1 in supersymmetric
(SUSY) extensions of the Standard Model (SM) is one
of the most motivated DM candidates [1–3]. A favored
scenario involves scalar partners of the charged leptons
(sleptons ˜̀) being one to tens of GeV above the �̃0

1 mass.
This enables interactions that reduce the �̃0

1 cosmologi-
cal relic abundance to match the observed value [4] via a
mechanism called slepton coannihilation [5, 6]. Further-
more, partners of the muon (smuon µ̃) and neutralinos
with masses near the weak scale are a leading explana-
tion for 3 � 4� deviations between measurements of the
muon magnetic moment and SM prediction [7–10].

Remarkably, Large Hadron Collider (LHC) searches
for these key targets have no sensitivity when mass dif-
ferences are 15 . �m(˜̀, �̃0

1) . 60 GeV [11–14]. Here,
Large Electron Positron (LEP) collider limits remain the
most stringent, excluding m(˜̀) . 97 GeV [15–17]. Sen-
sitivity is hindered by an obstruction generic to all LHC
search strategies for invisible DM states and their me-
diators [18–29]: the kinematics of colliding quarks and
gluons are immeasurable. Without this initial state in-
formation, the missing momentum four-vector pmiss left
by DM can only be determined in the plane transverse
to the beam (pmiss

T ). This precludes direct DM mass re-
construction that would otherwise provide e↵ective dis-
crimination against neutrino ⌫ backgrounds.

This Letter proposes a search strategy to resolve these
longstanding problems by using the LHC as a photon col-
lider [30]. In a beam crossing, protons can undergo an
ultraperipheral collision (UPC), where photons from the
electromagnetic fields interact to produce sleptons exclu-
sively pp ! p(�� ! ˜̀̀̃ )p. The sleptons decay as ˜̀! `�̃0

1,
resulting in the very clean final state p(2` + pmiss)p of
our search: two intact protons, two leptons `, and miss-
ing momentum (Fig. 1). As the beam energy is known,
measuring the outgoing proton kinematics determines
the colliding photon momenta and thus pmiss. This ex-
perimental possibility is opened by the ATLAS Forward
Proton (AFP) [31] and CMS–TOTEM Precision Proton
Spectrometer (CT-PPS) [32, 33] forward detectors, which
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FIG. 8. Exclusive pair-production of sleptons ˜̀ via photon–photon fusion. Each slepton decays
directly to a lepton and neutralino �̃0

1.
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FIG. 8. Exclusive pair-production of W boson pairs via photon–photon fusion in the `⌫`⌫ final
state.

FIG. 1. Exclusive pair production of (left) scalar leptons ‘slep-
tons’ ˜̀ decaying to dark matter �̃0

1 and (right) SM diboson
WW background using the LHC as a photon collider.

recorded first data in 2017 and 2016 respectively. CMS–
TOTEM moreover observed double lepton production in
high-luminosity proton-tagged events [34], demonstrat-
ing initial state reconstruction is feasible.

Photon collisions at the LHC reach su�cient rates to
probe rare processes such as SM light-by-light scatter-
ing [35, 36], anomalous gauge couplings [37, 38], and
axion-like particles [39, 40]. Nonetheless, it is widely
considered that photon fusion production of sleptons
is not competitive as a discovery window compared to
electroweak production [11–14]; existing photon collider
studies therefore focus on slepton mass measurement for
specific benchmark points [41–45]. Our proposal argues
the contrary that photon collisions play an essential role
in SUSY and DM searches. We emulate AFP/CT-PPS
proton tagging, which enables powerful background sup-
pression. We demonstrate a strategy that surpasses LEP
sensitivity in the favored 15 . �m(˜̀, �̃0

1) . 60 GeV cor-
ridor, underscoring the importance of initial state kine-
matics and pmiss for the LHC discovery program.

II. PHOTON COLLIDER SIMULATION

Electromagnetic fields surrounding ultrarelativistic
protons can be modeled as a beam of nearly on-shell pho-
tons, which is known as the equivalent photon approxi-
mation [46]. We consider pair production of electrically
charged particles X via photon fusion �� ! XX. An-
alytic expressions of their QED cross-sections ���!XX
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★ Probe of the top sector.

★ Laboratory to test our models of proton dissociation + proton-
proton MPI effects.

Figure 1: Anomalous �Z production via photon fusion with intact protons in the final state.

The operators of Eq. (2.1) induce an anomalous Z ! ��� decay [29], with a partial width that
in our notation reads

�NP(Z ! ���) =
m9

Z(2⇣
2 + 2⇣̃2 � ⇣⇣̃)

8640⇡3
. (2.2)

An anomalous �� ! �Z reaction is also induced, which is the focus of this work. We find the
unpolarized differential cross section to be 1

d�NP
��!�Z

d⌦
=

�

16⇡2s

h
(3⇣2 + 3⇣̃2 � 2⇣⇣̃)(st+ tu+ us)2 � 4(⇣2 + ⇣̃2 � ⇣⇣̃)2m2

Zstu
i
, (2.3)

where s, t, and u are the usual Mandelstam variables and � = 1�m2
Z/s for the �Z final state.

As the EFT is nonrenormalizable, a breakdown of unitarity is expected at high energies. Using
the well-known partial wave analysis [30] we can estimate for what values of ⇣, ⇣̃ and s the theory
remains unitary. By imposing unitarity on the S-wave of the EFT amplitudes and neglecting the
Z boson mass one finds the conditions (see [4] for details on similar amplitudes)

|⇣ + ⇣̃|s2 < 4⇡ , |⇣ � ⇣̃|s2 <
12⇡

5
. (2.4)

As most of the recorded �Z events have
p
s below 1 TeV, we expect the EFT to remain unitary for

couplings up to
⇣, ⇣̃ < (10�12

� 10�11) GeV�4 . (2.5)

The sensitivities we will derive in Sec. 7 are much lower than these unitarity bounds. However, as a
caveat, we stress that unless the underlying New Physics model is very strongly coupled, the EFT
typically breaks down before unitarity is violated.

3 Contributions from New Physics

Loops of heavy particles charged under SU(2)L ⇥ U(1)Y contribute to the ���Z couplings. These
loop contributions only depend on the mass and quantum numbers of the particle in the loop and
can thus be given in full generality. Denoting hypercharge by Y , sine and cosine of the Weinberg
angle by sw and cw and labeling the SU(2)L representation by its dimension d, we can write [4]

⇣
⇣, ⇣̃

⌘
=

⇣
cs, c̃s

⌘ ↵2
em

swcw m4
d

✓
c2w

3d4 � 10d2 + 7

240
+ (c2w � s2w)

(d2 � 1)Y 2

4
� s2wY

4

◆
, (3.1)

1
It has been noted in [29] that the operators O± = O

�Z
± Õ

�Z
do not interfere. This property provides

a cross check of our result Eq. (2.3), as in this basis we get ⇣± = ⇣ ± ⇣̃, (3⇣2 + 3⇣̃2 � 2⇣⇣̃) = ⇣2+ + 2⇣2� and

4(⇣2 + ⇣̃2 � ⇣⇣̃) = ⇣2+ + 3⇣2� , hence a vanishing interference.

3

5

FIG. 3. Feynman diagram illustrating photon-initiated pro-
cesses with one or two top quarks in the final state and at
least one FCNC coupling.

C. Required Integrated Luminosity for Discovery

To observe a process, using purely statistical uncer-
tainties, the standard criterion of an excess of 5 standard
deviations from the null hypothesis can be met by ob-
serving 25 or more events above the background expec-
tation (assuming only Poisson statistical errors). Three
di↵erent benchmark delivered luminosities are considered
at 13 TeV; 100 pb�1, 300 pb�1, and 1 fb�1. The ex-
pected number of measured tt̄ events for each of these
benchmarks is presented in Table III B. Only statistical
uncertainties from the cross-section calculation are con-
sidered and these are negligible. For fully elastic pro-
cesses involving either one or two photons, the expected
yields are well below one event and are therefore unlikely
to be measurable in low-µ data. In contrast, the semi-
elastic production could almost be measured with even
the most pessimistic amount of low-µ data and should
be observable (and perhaps even di↵erentiated between
pomeron- and photon-induced processes) with 300 pb�1

and above. It should be noted that the assumption of no
background is generally true (given that statistical un-
certainties on the data would be 10% or higher at these
expected number of events). The tt̄ final state is not
easily imitated by other SM signatures, and this is even
more true for the elastic case. One process that would
not form a relevant background but could form an addi-
tional signal is the associated production of a top quark
and a W boson, which can be produced semi-elastically,
mediated by a photon, with roughly half the cross-section
of the �p ! tt̄process. The central detector acceptance
for this process would look very similar to the dileptonic
and semi-leptonic cases for tt̄ but would not pass the all
hadronic selection (as there is only one b-tagged jet in
the tW final state). In the most optimistic luminosity
case, the tW process would add around 10 events to the
total signal.

IV. FLAVOR CHANGING NEUTRAL
CURRENTS

Photon-initiated elastic processes are a potential lab-
oratory for searching for the existence of flavor-changing
neutral currents (FCNCs) of the form t ! u/c�. The SM
predicts that such currents can exist but that their ex-
istence is heavily suppressed. FCNCs could manifest in
many elastic processes involving top quarks and photons
but in most cases, there would be a significant SM back-
ground. One case, however, stands out as being uniquely
sensitive. The production of a single top quark, with
no associated quarks or bosons (�u ! t), is something
that e↵ectively does not exist in the SM but could pro-
duce measurable numbers of events with relatively weak
FCNCs. There is no other SM process that can imitate
this signature, and an observation of it would be strik-
ing evidence for the presence of photon-mediated FCNC.
This unique topology was already discussed in previous
studies [26], however, the unique ability to suppress SM
backgrounds by concentrating on the elastic process with
a forward proton tag is discussed here for the first time.
This process is modeled using MadGraph5 aMC@NLO
in an e↵ective field theory context using the dim6top
model [27]. This model allows 15 CP-conserving and
15 CP-violating degrees of freedom. We follow a similar
EFT setup to the one used in [28], with the added simpli-
fication that left-handed and right-handed couplings be-
come degenerate in the t ! u/c� process and we, there-
fore, estimate limits on only two couplings:

C(3a)
uA ⌘ C(a3)

uA ⌘ cWC(3a)
uB + sWC(3a)

uW , (3)

where the index a is 1 for up flavor quarks and 2 for
charm flavor quarks. The SM predicts that the branch-
ing ratio for tops to decay to either an up quark or charm
quark and a photon to be 4 ⇥ 10�16 and 5 ⇥ 10�14, re-
spectively [29]. The presence of many new physics mod-
els, such as a flavor violating two-Higgs-doublet-model
(2HDM), can increase this considerably to O(10�7) [30].
The branching ratio for such couplings have already been
probed by the ATLAS and CMS collaborations in top
quark decays and have been constrained to the level of
< O(10�5) for t ! �u and < O(10�4) for t ! �c [28, 31].
However, these analyses had to contend with huge SM
cross-sections, relative to their potential FCNC signal
strength, and must use complex neural networks to con-
struct sensitive observables. Such experimental gymnas-
tics are not necessary for elastic top production as the
primary signature has no irreducible backgrounds and
strong limits can be set based on a simple cut-and-count
cross-section measurement. Though the study here ex-
plores the �p ! t process, the results are expressed as
branching ratios for t ! �p to facilitate comparisons with
existing limits from ATLAS and CMS. Using the same
technique used to prototype the required amount of data
to observe elastic processes in Section III C I extrapolate
the limits that could be achieved by a lack of observa-
tion of the � ! tt̄ process with the three benchmark
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New physics and tau g � 2 using LHC heavy ion collisions
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The anomalous magnetic moment of the tau lepton a⌧ = (g⌧ �2)/2 strikingly evades measurement,
but is highly sensitive to new physics such as compositeness or supersymmetry. We propose using
ultraperipheral heavy ion collisions at the LHC to probe modified magnetic �a⌧ and electric dipole
moments �d⌧ . We introduce a suite of one electron/muon plus track(s) analyses, leveraging the
exceptionally clean photon fusion �� ! ⌧⌧ events to reconstruct both leptonic and hadronic tau
decays sensitive to �a⌧ , �d⌧ . Assuming 10% systematic uncertainties, the current 2 nb�1 lead–lead
dataset could already provide constraints of �0.0080 < a⌧ < 0.0046 at 68% CL. This surpasses 15
year old lepton collider precision by a factor of three while opening novel avenues to new physics.

I. INTRODUCTION

Precision measurements of electromagnetic couplings
are foundational tests of quantum electrodynamics
(QED) and powerful probes of beyond the Standard
Model (BSM) physics. The electron anomalous mag-
netic moment ae = 1

2 (ge �2) is among the most precisely
known quantities in nature [1–5]. The muon counterpart
aµ is measured to 10�7 precision [6] and reports a 3� 4�

tension from SM predictions [7, 8]. This may indicate
new physics [9–12], to be clarified at Fermilab [13] and
J–PARC [14]. Measuring a` generically tests lepton com-
positeness [15], while supersymmetry at energy scales MS

induces radiative corrections �a` ⇠ m
2
`/M

2
S for leptons

with mass m` [9]. Thus the tau ⌧ can be m
2
⌧/m

2
µ ⇠ 280

times more sensitive to BSM physics than aµ.
However, a⌧ continues to evade measurement because

the short tau proper lifetime ⇠ 10�13 s precludes use
of spin precession methods [6]. The most precise single-
experiment measurement a

exp
⌧ is from DELPHI [16, 17]

at the Large Electron Positron Collider (LEP), but is re-
markably an order of magnitude away from the theoret-
ical central value a

pred
⌧, SM predicted to 10�5 precision [18]

a
exp
⌧ = �0.018 (17), a

pred
⌧, SM = 0.001 177 21 (5). (1)

The poor constraints on a⌧ present striking room for
BSM physics, especially given other lepton sector ten-
sions [19–26], and motivate new experimental strategies.

This Letter proposes a suite of analyses to probe a⌧

using heavy ion beams at the LHC. We leverage ultrape-
ripheral collisions (UPC) where only the electromagnetic
fields surrounding lead (Pb) ions interact. Tau pairs are
produced from photon fusion PbPb ! Pb(�� ! ⌧⌧)Pb,
illustrated in Fig. 1, whose sensitivity to a⌧ was sug-
gested in 1991 [27]. We introduce the strategy crucial
for experimental realization and importantly show that
the currently recorded dataset could already surpass LEP
precision. The LHC cross-section enjoys a Z

4 enhance-
ment (Z = 82 for Pb), with over one million �� ! ⌧⌧

events produced to date. Existing proposals using lep-
ton beams require future datasets (Belle-II) or proposed
facilities (CLIC, LHeC) [28–34], while LHC studies fo-
cus on high luminosity proton beams [35–40]. No LHC
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FIG. 1. Pair production of tau leptons ⌧ from ultraperipheral
lead ion (Pb) collisions in two of the most common decay
modes: ⇡

±
⇡

0
⌫⌧ and `⌫`⌫⌧ . New physics can modify tau–

photon couplings a↵ecting the magnetic moment by �a⌧ .

analysis of �� ! ⌧⌧ exists as the taus have insu�cient
momentum for ATLAS/CMS to record or reconstruct.

Our proposal overcomes these obstructions in the clean
UPC events [41], enabling selection of individual tracks
from tau decays with no other detector activity akin to
LEP [16]. We exploit recent advances in low momentum
electron/muon identification [42–44] to suppress hadronic
backgrounds. We then present a shape analysis sensitive
to interfering SM and BSM amplitudes to enhance a⌧

constraints. Our strategy also probes tau electric dipole
moments d⌧ induced by charge–parity (CP) violating new
physics. This opens key new directions in the heavy ion
program amid reviving interest in photon collisions [45–
47] for light-by-light scattering [48–51], standard candle
processes [52–56], and BSM dynamics [57–67].

II. EFFECTIVE THEORY & PHOTON FLUX

The anomalous ⌧ magnetic moment a⌧ = (g⌧ � 2)/2 is
defined by the spin–magnetic Hamiltonian �µ⌧ · B =
�(g⌧e/2m⌧ )S · B. In the Lagrangian formulation of
QED, electromagnetic moments arise from the spinor
tensor �

µ⌫ = i[�µ
, �

⌫ ]/2 structure of the fermion current
interacting with the photon field strength Fµ⌫

L = 1
2 ⌧̄L�

µ⌫
⇣
a⌧

e
2m⌧

� id⌧�5

⌘
⌧RFµ⌫ . (2)
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1 Introduction
Elastic light-by-light (LbL) scattering, gg ! gg, is a pure quantum mechanical process that
proceeds, at leading order in the quantum electrodynamics (QED) coupling a, via virtual box
diagrams containing charged particles (Fig. 1, left). In the standard model (SM), the box di-
agram involves contributions from charged fermions (leptons and quarks) and the W± bo-
son. Although LbL scattering via an electron loop has been indirectly tested through the high-
precision measurements of the anomalous magnetic moment of the electron [1] and muon [2],
its direct observation in the laboratory remains elusive because of a very suppressed produc-
tion cross section proportional to a4 ⇡ 3 ⇥ 10�9. Out of the two closely-related processes—
photon scattering in the Coulomb field of a nucleus (Delbrück scattering) [3] and photon split-
ting in a strong magnetic field (“vacuum birefringence”) [4, 5]—only the former has been
clearly observed [6]. However, as demonstrated in Ref. [7], the LbL process can be experi-
mentally observed in ultraperipheral interactions of ions, with impact parameters larger than
twice the radius of the nuclei, exploiting the very large fluxes of quasireal photons emitted by
the nuclei accelerated at TeV energies [8]. Ions accelerated at high energies generate strong elec-
tromagnetic fields, which, in the equivalent photon approximation [9–11], can be considered
as g beams of virtuality Q

2 < 1/R
2, where R is the effective radius of the charge distribu-

tion. For lead (Pb) nuclei with radius R ⇡ 7 fm, the quasireal photon beams have virtuali-
ties Q

2 < 10�3 GeV2, but very large longitudinal energy (up to Eg = g/R ⇡ 80 GeV, where
g is the Lorentz relativistic factor), enabling the production of massive central systems with
very soft transverse momenta (pT . 0.1 GeV). Since each photon flux scales as the square of
the ion charge Z

2, gg scattering cross sections in PbPb collisions are enhanced by a factor of
Z

4 ' 5 ⇥ 107 compared to similar proton-proton or electron-positron interactions.

γ

γ

PbPb

Pb Pb Pb

Pb

Pb(*)

Pb(*)

Pb(*)

Pb(*) Pb(*)

Pb(*)

g

g

g

e+

e−

γ

γ

γ

γ

γ

γ

Figure 1: Schematic diagrams of light-by-light scattering (gg ! gg, left), QED dielectron
(gg ! e+e�, centre), and central exclusive diphoton (gg ! gg, right) production in ultra-
peripheral PbPb collisions. The (⇤) superscript indicates a potential electromagnetic excitation
of the outgoing ions.

Many final states have been measured in photon-photon interactions in ultraperipheral colli-
sions of proton and/or lead beams at the CERN LHC, including gg ! e+e� [12–21], gg !
W+W� [22–24], and first evidence of gg ! gg reported by the ATLAS experiment [25] with a
signal significance of 4.4 standard deviations (3.8 standard deviations expected). The final-state
signature of interest in this analysis is the exclusive production of two photons, PbPb ! gg !
Pb(⇤)ggPb(⇤), where the diphoton final state is measured in the otherwise empty central part
of the detector, and the outgoing Pb ions (with a potential electromagnetic excitation denoted
by the (⇤) superscript) survive the interaction and escape undetected at very low q angles with
respect to the beam direction (Fig. 1, left). The dominant backgrounds are the QED production
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Observation of proton scattering in association with lepton pairs   

•  Forward scattering of incident protons is a hallmark prediction of photon fusion 
 
•  Measured in ATLAS Forward Proton spectrometer (AFP)  

 

σfid (ee+p)  = 11.0 ± 2.6 (stat) ± 1.2 (syst) ± 0.3 (lumi)  fb 
σfid (µµ+p)  =   7.2 ± 1.6 (stat) ± 0.9 (syst) ± 0.2 (lumi)  fb 
 
Obs. significance: well above 5σ for both (ee) and (µµ)  

Good agreement with SM expectations 

ATLAS-CONF-2020-041  AFP data recorded 2017 at high µ  

Fractional proton energy  
loss from scattered proton   

Fractional proton energy  
loss from lepton kinematics  

First cross-section measurement using proton-tagging 
in photon-fusion processes at the LHC 

Exclusive diphoton production with intact protons

Search for exclusive diphoton production with intact protons detected in the 
TOTEM detector
• Data collected in 2016, IntL = 9.6 fb-1, will extend to the total 110 fb-1 of 

Run 2
• Addressing high mass,  M!! > 350 GeV
• Extension of SM Lagrangian with 8-dim term of 4-photon interaction:

CMS PAS EXO-18-014 
TOTEM NOTE 2020-003

No events observed when requiring matching between the mass and 
rapidity extracted from photons and protons.
Upper limits at 95% CL on the 4-photon anomalous quartic couplings:

Elastic selection: 1-!"|/# <0.005
266 events

with
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First cross-section measurement using proton-tagging 
in photon-fusion processes at the LHC 

• Dedicated proton tagging detectors at ATLAS/CMS allow exclusive events 
with intact protons in final state to be selected during nominal running.

ATLAS + CMS Highlights, ICHEP 2020

• Unique & complementary probe of SM/BSM at LHC. Data already public!

• Possibilities for HL-LHC running actively being explored.
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Figure 2: Numbers of simulated and observed events for the various selection regions de-
scribed in the text. The shaded bands show the statistical uncertainties in the simulated back-
grounds added in quadrature. All selection regions are sequential from left to right, with the
exception of the inclusive region used in the backgrounds yield correction, thus with a data-to-
prediction ratio constrained to unity. The signal region is denoted as “Tight x±gg”.

on an event-by-event basis significantly reduces the contribution of inclusive backgrounds [17].
In fact, the large majority of such events come from the coincidence of an inclusively-produced
diphoton event with pileup protons from unrelated events. The kinematic matching ensures
that the two systems originate from the same pp interaction. The kinematic variables of an
opposite-arm, two-proton system are converted into missing mass and rapidity of the central
system through mpp =

p
sx+x�, and ypp = (1/2) log(x+/x�), where x+ and x� correspond to

the x of protons on the positive z and negative z sides of CT-PPS, respectively. In the case of ex-
clusive diphoton production, both systems are correlated through mpp = mgg and ypp = ygg .
The resolution of the diphoton mass as deducted from uncertainties in the photons’ momenta is
2.0%. For the two-proton system, a diphoton mass resolution of 5.5–8.4% is expected from the
proton fractional momentum loss uncertainties. Equivalently, the central two-photon rapidity
resolution is 7.4%, while the forward proton rapidity uncertainty is bounded between 0.05–0.09
in absolute value. In this search, a 2s window is used in matching the difference, both in mass
and rapidity, between the central and the two-proton systems; here s indicates the combined
resolution of the two systems.

The CT-PPS silicon strips, by design, can only reconstruct one proton at a time. This feature
leads to a failure of the event reconstruction when multiple candidates are observed in the
same RP for the same bunch crossing, leading to an inefficiency of 30% or less in both arms of
CT-PPS for the entire data taking period considered in this study. Additionally, the acceptance
is restricted to the regions of the silicon strips where the radiation-induced inefficiency remains
below 10%. The asymmetric region corresponds to 0.070 < x� < 0.111 and 0.070 < x+ < 0.138.

Only two events remain in the signal search region with an expected background of 2.1+1.0
�0.7

(stat) when no kinematic matching criteria are applied. Of these, neither contains a pair of
forward proton tracks.

Background contributions are estimated following the procedure described in Ref. [27], where

CMS + TOTEM - arXiv:2110.05916

https://inspirehep.net/literature/1849987


Modelling (semi)-exclusive PI production

Photon        

contribution is included, although even here the uncertainty at lower mass is again significantly
larger than the corresponding PDF uncertainty and even at higher masses of the same order.
However, such corrections are often not available (publicly or otherwise) for LHC processes.
Moreover, even if these corrections are eventually explicitly included, one will still introduce an
(albeit smaller) source of uncertainty due to the residual scale dependence that can be bypassed
entirely by simply working with the exact result, as calculated in the structure function approach.
More significantly from a phenomenological point of view, we have seen that once one starts to
include cuts, or consider observables that are sensitive to the photon transverse momenta, the
di↵erence between even the NLO prediction (or that using the k?–factorization approach) can
again be rather large.

We note that the magnitude of these scale variation uncertainties in the inclusive cross
sections are roughly consistent with the LO and NLO uncertainty bands on the photon PDF
presented in Section 9 of [13], being of a similar origin. However, here the final ‘missing higher
order’ uncertainty derived within this approach is, as discussed in this work (see footnote 11),
only relevant for the case that one works at NLO for the photon–initiated contributions, and
will otherwise drastically underestimate the corresponding uncertainty, as we have seen above.
Moreover even if one works at NLO, then the uncertainty that they include, which comes from
the manner in which one defines the photon PDF and the factorization scale choice which
corresponds to it, is entirely absent in the structure function calculation. More significantly,
while this uncertainty is estimated to be rather small in [13], at the ⇠ 1% level or less, the
scale variation uncertainty in the NLO collinear cross section is not entirely accounted for by
this, and is in many cases larger, as we have seen. On the other hand, as discussed at the
end of Section 2, other small sources of uncertainty from missing higher–order non–factorizable
corrections, remain in both the structure function and collinear calculations.

4 Hadron–hadron collisions

We now consider some phenomenological implications of the results above for photon–initiated
production at the LHC. Before doing so, we briefly discuss the connection between the structure
function result (1) and the collinear prediction via the photon PDF, similarly to the lepton–
hadron case considered before. As in [33] we can write

�pp =
1

2s

Z
dx1dx2 d

2
q1?d

2
q2?d�↵(Q2

1)↵(Q
2
2)
⇢
µµ0

1 ⇢
⌫⌫0
2 M

⇤
µ0⌫0Mµ⌫

q21q
2
2

�
(4)(q1 + q2 � pX) , (29)

where xi and qi? are the photon momentum fractions (see [33] for precise definitions) and trans-
verse momenta, respectively. The amplitude squared M

⇤
µ0⌫0Mµ⌫ permits a general expansion [7]

M
⇤
µ0⌫0Mµ⌫ = Rµµ0R⌫⌫0

1

4

X

�1�2

|M�1�2 |2 + · · · , (30)

where we omit various terms that vanish when taking the Q1,2 ⌧ M
2
X limit, or after integration

over the photon azimuthal angle. Here R is the metric tensor that is transverse to the photon
momenta q1,2:

R
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• Basic idea applies the `Structure function’ approach. 
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•  Cross section given in 
terms of proton EM form 
factors and inelastic 
structure functions.
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Drell–Yan process and the region of lower transverse momenta, where resummation must be
applied. We in particular present results for the ATLAS 8 TeV event selection [29]. These
can enter at the level of a few percent in the region where fixed–order QCD may be applied,
relevant to PDF fits, while for the lower pll? region relevant to comparisons with resummed QCD
calculations, these can be as large as 10%.

The outline of this paper is as follows. In Section 2 we summarise the key ingredients of
the structure function approach. In Section 3 we present a detailed comparison of this with
the standard approach, in terms of a photon PDF, for the simpler case of lepton–proton (and
photon–proton) scattering; we in particular demonstrate explicitly how the standard approach
is derived via an approximation to the structure function calculation, and which is therefore
by construction less precise. In Section 4 we discuss the case of proton–proton collisions, and
present phenomenological predictions for lepton pair production at the LHC. In Section 5 we
conclude and discuss future work.

2 Structure Function Calculation

The basic observation we apply is that in the high–energy limit the photon–initiated cross section
in proton–proton collisions1 can be written in the general form

�pp =
1

2s
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Here the outgoing hadronic systems have momenta p1,2 and the photons have momenta q1,2, with

q
2
1,2 = �Q

2
1,2. We consider the production of a system of 4–momentum k = q1 + q2 =

PN
j=1 kj

of N particles, where d� =
QN

j=1 d
3
kj/2Ej(2⇡)3 is the standard phase space volume. M

µ⌫

corresponds to the �� ! X(k) production amplitude, with arbitrary photon virtualities.
The above expression is the basis of the equivalent photon approximation [7], as well as being

precisely the formulation used in the structure function approach [19] applied to the calculation
of Higgs Boson production via VBF. In particular, ⇢ is the density matrix of the virtual photon,
which is given in terms of the well known proton structure functions:
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2
p) for a hadronic system of massMi and we note that the definition

of the photon momentum qi as outgoing from the hadronic vertex is opposite to the usual DIS
convention. Here, the integral over M

2
i is understood as being performed simultaneously with

the phase space integral over p0i, i.e. is not fully factorized from it (the energy E
0
i in particular

depends on Mi). This corresponds to the general Lorentz–covariant expression that can be
written down for the photon–hadron vertex, and indeed because of precisely this point it is the
same object which appears in the cross section for (photon–initiated) lepton–hadron scattering,
including in the DIS region. We have

d�lp
dQ2

=
↵(Q2)

4s2
⇢
↵�
i L↵�

Q2
, (3)

where L is the usual spin–averaged leptonic tensor. Indeed the photon density matrix is straight-
forwardly related to the standard hadronic tensor W↵� that enters the e.g. the DIS cross section

1We will for concreteness consider the case of two–photon initiated production, but the mixed case where only
one photon participates in the initial state can be written down in a similar way.
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• Exclusive/semi-exclusive production: colour singlet photon naturally leads 
to events with intact protons/rapidity gaps in final state.
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Lepton pair production

• ATLAS (arXiv:1506.07098) have measured exclusive   and    pair 
production      use                    to compare to this.
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The ATLAS Collaboration

Abstract

This Letter reports a measurement of the exclusive �� ! `+`� (` = e, µ) cross-section in
proton–proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment
at the LHC, based on an integrated luminosity of 4.6 fb�1. For the electron or muon pairs
satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to
extract the fiducial cross-sections. The cross-section in the electron channel is determined to
be�excl.

��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb for a phase-space region with invariant
mass of the electron pairs greater than 24 GeV, in which both electrons have transverse
momentum pT > 12 GeV and pseudorapidity |⌘| < 2.4. For muon pairs with invariant mass
greater than 20 GeV, muon transverse momentum pT > 10 GeV and pseudorapidity |⌘| <
2.4, the cross-section is determined to be�excl.

��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb.
When proton absorptive e↵ects due to the finite size of the proton are taken into account in
the theory calculation, the measured cross-sections are found to be consistent with the theory
prediction.

c� 2015 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.
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Table 3: Definition of the electron and muon channel fiducial regions for which the exclusive cross-sections are
evaluated.

Variable Electron channel Muon channel
p`T > 12 GeV > 10 GeV
|⌘` | < 2.4 < 2.4
m`+`� > 24 GeV > 20 GeV

the standard dipole form-factors and the improved model parameterisation including pQCD corrections
from Ref. [60]. The latter includes a fit uncertainty and the prediction furthest away from the dipole
form-factors is chosen.

Similarly, for the µ+µ� channel,

Rexcl.
��!µ+µ� = 0.791 ± 0.041 (stat.) ± 0.026 (syst.) ± 0.013 (theor.) ,

�EPA
��!µ+µ� = 0.794 ± 0.013 (theor.) pb .

The resulting fiducial cross-section for the electron channel is measured to be

�excl.
��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb .

This value can be compared to the theoretical prediction, including absorptive corrections to account for
the finite size of the proton [10]:

�EPA, corr.
��!e+e� = 0.398 ± 0.007 (theor.) pb .

For the muon channel, the fiducial cross-section is measured to be

�excl.
��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb ,

to be compared with [10]:
�EPA, corr.
��!µ+µ� = 0.638 ± 0.011 (theor.) pb .

The uncertainty of each prediction includes an additional 0.8% uncertainty related to the modelling of
proton absorptive corrections. It is evaluated by varying the e↵ective transverse size of the proton by 3%,
according to Ref. [64]. Figure 4 shows the ratios of the measured cross-sections to the EPA calculations
and to the prediction with the inclusion of absorptive corrections. The measurements are in agreement
with the predicted values corrected for proton absorptive e↵ects. The figure includes a similar CMS
cross-section measurement [18].

8 Conclusion

Using 4.6 fb�1 of data from pp collisions at a centre-of-mass energy of 7 TeV the fiducial cross-sections
for exclusive �� ! `+`� (` = e, µ) reactions have been measured with the ATLAS detector at the
LHC. Comparisons are made to the theory predictions based on EPA calculations, as included in the Her-
wig++ MC generator. The corresponding data-to-EPA signal ratios for the electron and muon channels
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Photon collider search strategy for sleptons and dark matter at the LHC

Lydia Beresford1, ⇤ and Jesse Liu1, †

1Department of Physics, University of Oxford, Oxford OX1 3RH, UK

We propose a search strategy using the LHC as a photon collider to open sensitivity to scalar
lepton (slepton ˜̀) production with masses around 15 to 60 GeV above that of neutralino dark matter
�̃0
1. This region is favored by relic abundance and muon (g� 2)µ arguments. However, conventional

searches are hindered by the irreducible diboson background. We overcome this obstruction by
measuring initial state kinematics and the missing momentum four-vector in proton-tagged ultra-
peripheral collisions using forward detectors. We demonstrate sensitivity beyond LEP for slepton
masses of up to 220 GeV for 15 . �m(˜̀, �̃0

1) . 60 GeV with 100 fb�1 of 13 TeV proton collisions.
We encourage the LHC collaborations to open this forward frontier for discovering new physics.

I. INTRODUCTION

Elucidating the elementary properties of dark matter
(DM) is among the most urgent problems in fundamental
physics. The lightest neutralino �̃0

1 in supersymmetric
(SUSY) extensions of the Standard Model (SM) is one
of the most motivated DM candidates [1–3]. A favored
scenario involves scalar partners of the charged leptons
(sleptons ˜̀) being one to tens of GeV above the �̃0

1 mass.
This enables interactions that reduce the �̃0

1 cosmologi-
cal relic abundance to match the observed value [4] via a
mechanism called slepton coannihilation [5, 6]. Further-
more, partners of the muon (smuon µ̃) and neutralinos
with masses near the weak scale are a leading explana-
tion for 3 � 4� deviations between measurements of the
muon magnetic moment and SM prediction [7–10].

Remarkably, Large Hadron Collider (LHC) searches
for these key targets have no sensitivity when mass dif-
ferences are 15 . �m(˜̀, �̃0

1) . 60 GeV [11–14]. Here,
Large Electron Positron (LEP) collider limits remain the
most stringent, excluding m(˜̀) . 97 GeV [15–17]. Sen-
sitivity is hindered by an obstruction generic to all LHC
search strategies for invisible DM states and their me-
diators [18–29]: the kinematics of colliding quarks and
gluons are immeasurable. Without this initial state in-
formation, the missing momentum four-vector pmiss left
by DM can only be determined in the plane transverse
to the beam (pmiss

T ). This precludes direct DM mass re-
construction that would otherwise provide e↵ective dis-
crimination against neutrino ⌫ backgrounds.

This Letter proposes a search strategy to resolve these
longstanding problems by using the LHC as a photon col-
lider [30]. In a beam crossing, protons can undergo an
ultraperipheral collision (UPC), where photons from the
electromagnetic fields interact to produce sleptons exclu-
sively pp ! p(�� ! ˜̀̀̃ )p. The sleptons decay as ˜̀! `�̃0

1,
resulting in the very clean final state p(2` + pmiss)p of
our search: two intact protons, two leptons `, and miss-
ing momentum (Fig. 1). As the beam energy is known,
measuring the outgoing proton kinematics determines
the colliding photon momenta and thus pmiss. This ex-
perimental possibility is opened by the ATLAS Forward
Proton (AFP) [31] and CMS–TOTEM Precision Proton
Spectrometer (CT-PPS) [32, 33] forward detectors, which
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FIG. 8. Exclusive pair-production of W boson pairs via photon–photon fusion in the `⌫`⌫ final
state.

FIG. 1. Exclusive pair production of (left) scalar leptons ‘slep-
tons’ ˜̀ decaying to dark matter �̃0

1 and (right) SM diboson
WW background using the LHC as a photon collider.

recorded first data in 2017 and 2016 respectively. CMS–
TOTEM moreover observed double lepton production in
high-luminosity proton-tagged events [34], demonstrat-
ing initial state reconstruction is feasible.

Photon collisions at the LHC reach su�cient rates to
probe rare processes such as SM light-by-light scatter-
ing [35, 36], anomalous gauge couplings [37, 38], and
axion-like particles [39, 40]. Nonetheless, it is widely
considered that photon fusion production of sleptons
is not competitive as a discovery window compared to
electroweak production [11–14]; existing photon collider
studies therefore focus on slepton mass measurement for
specific benchmark points [41–45]. Our proposal argues
the contrary that photon collisions play an essential role
in SUSY and DM searches. We emulate AFP/CT-PPS
proton tagging, which enables powerful background sup-
pression. We demonstrate a strategy that surpasses LEP
sensitivity in the favored 15 . �m(˜̀, �̃0

1) . 60 GeV cor-
ridor, underscoring the importance of initial state kine-
matics and pmiss for the LHC discovery program.

II. PHOTON COLLIDER SIMULATION

Electromagnetic fields surrounding ultrarelativistic
protons can be modeled as a beam of nearly on-shell pho-
tons, which is known as the equivalent photon approxi-
mation [46]. We consider pair production of electrically
charged particles X via photon fusion �� ! XX. An-
alytic expressions of their QED cross-sections ���!XX
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Figure 1: Anomalous �Z production via photon fusion with intact protons in the final state.

The operators of Eq. (2.1) induce an anomalous Z ! ��� decay [29], with a partial width that
in our notation reads

�NP(Z ! ���) =
m9

Z(2⇣
2 + 2⇣̃2 � ⇣⇣̃)

8640⇡3
. (2.2)

An anomalous �� ! �Z reaction is also induced, which is the focus of this work. We find the
unpolarized differential cross section to be 1

d�NP
��!�Z

d⌦
=

�

16⇡2s

h
(3⇣2 + 3⇣̃2 � 2⇣⇣̃)(st+ tu+ us)2 � 4(⇣2 + ⇣̃2 � ⇣⇣̃)2m2

Zstu
i
, (2.3)

where s, t, and u are the usual Mandelstam variables and � = 1�m2
Z/s for the �Z final state.

As the EFT is nonrenormalizable, a breakdown of unitarity is expected at high energies. Using
the well-known partial wave analysis [30] we can estimate for what values of ⇣, ⇣̃ and s the theory
remains unitary. By imposing unitarity on the S-wave of the EFT amplitudes and neglecting the
Z boson mass one finds the conditions (see [4] for details on similar amplitudes)

|⇣ + ⇣̃|s2 < 4⇡ , |⇣ � ⇣̃|s2 <
12⇡

5
. (2.4)

As most of the recorded �Z events have
p
s below 1 TeV, we expect the EFT to remain unitary for

couplings up to
⇣, ⇣̃ < (10�12

� 10�11) GeV�4 . (2.5)

The sensitivities we will derive in Sec. 7 are much lower than these unitarity bounds. However, as a
caveat, we stress that unless the underlying New Physics model is very strongly coupled, the EFT
typically breaks down before unitarity is violated.

3 Contributions from New Physics

Loops of heavy particles charged under SU(2)L ⇥ U(1)Y contribute to the ���Z couplings. These
loop contributions only depend on the mass and quantum numbers of the particle in the loop and
can thus be given in full generality. Denoting hypercharge by Y , sine and cosine of the Weinberg
angle by sw and cw and labeling the SU(2)L representation by its dimension d, we can write [4]

⇣
⇣, ⇣̃

⌘
=

⇣
cs, c̃s

⌘ ↵2
em

swcw m4
d

✓
c2w

3d4 � 10d2 + 7

240
+ (c2w � s2w)

(d2 � 1)Y 2

4
� s2wY

4

◆
, (3.1)

1
It has been noted in [29] that the operators O± = O

�Z
± Õ

�Z
do not interfere. This property provides

a cross check of our result Eq. (2.3), as in this basis we get ⇣± = ⇣ ± ⇣̃, (3⇣2 + 3⇣̃2 � 2⇣⇣̃) = ⇣2+ + 2⇣2� and

4(⇣2 + ⇣̃2 � ⇣⇣̃) = ⇣2+ + 3⇣2� , hence a vanishing interference.

3
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• Exclusive/semi-exclusive production: colour singlet photon naturally leads 
to events with intact protons/rapidity gaps in final state.
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Lepton pair production

• ATLAS (arXiv:1506.07098) have measured exclusive   and    pair 
production      use                    to compare to this.
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Submitted to: Phys. Lett. B. CERN-PH-EP-2015-134
18th August 2015

Measurement of exclusive �� ! `+`� production in proton–proton
collisions at

p
s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter reports a measurement of the exclusive �� ! `+`� (` = e, µ) cross-section in
proton–proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment
at the LHC, based on an integrated luminosity of 4.6 fb�1. For the electron or muon pairs
satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to
extract the fiducial cross-sections. The cross-section in the electron channel is determined to
be�excl.

��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb for a phase-space region with invariant
mass of the electron pairs greater than 24 GeV, in which both electrons have transverse
momentum pT > 12 GeV and pseudorapidity |⌘| < 2.4. For muon pairs with invariant mass
greater than 20 GeV, muon transverse momentum pT > 10 GeV and pseudorapidity |⌘| <
2.4, the cross-section is determined to be�excl.

��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb.
When proton absorptive e↵ects due to the finite size of the proton are taken into account in
the theory calculation, the measured cross-sections are found to be consistent with the theory
prediction.

c� 2015 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.
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Table 3: Definition of the electron and muon channel fiducial regions for which the exclusive cross-sections are
evaluated.

Variable Electron channel Muon channel
p`T > 12 GeV > 10 GeV
|⌘` | < 2.4 < 2.4
m`+`� > 24 GeV > 20 GeV

the standard dipole form-factors and the improved model parameterisation including pQCD corrections
from Ref. [60]. The latter includes a fit uncertainty and the prediction furthest away from the dipole
form-factors is chosen.

Similarly, for the µ+µ� channel,

Rexcl.
��!µ+µ� = 0.791 ± 0.041 (stat.) ± 0.026 (syst.) ± 0.013 (theor.) ,

�EPA
��!µ+µ� = 0.794 ± 0.013 (theor.) pb .

The resulting fiducial cross-section for the electron channel is measured to be

�excl.
��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb .

This value can be compared to the theoretical prediction, including absorptive corrections to account for
the finite size of the proton [10]:

�EPA, corr.
��!e+e� = 0.398 ± 0.007 (theor.) pb .

For the muon channel, the fiducial cross-section is measured to be

�excl.
��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb ,

to be compared with [10]:
�EPA, corr.
��!µ+µ� = 0.638 ± 0.011 (theor.) pb .

The uncertainty of each prediction includes an additional 0.8% uncertainty related to the modelling of
proton absorptive corrections. It is evaluated by varying the e↵ective transverse size of the proton by 3%,
according to Ref. [64]. Figure 4 shows the ratios of the measured cross-sections to the EPA calculations
and to the prediction with the inclusion of absorptive corrections. The measurements are in agreement
with the predicted values corrected for proton absorptive e↵ects. The figure includes a similar CMS
cross-section measurement [18].

8 Conclusion

Using 4.6 fb�1 of data from pp collisions at a centre-of-mass energy of 7 TeV the fiducial cross-sections
for exclusive �� ! `+`� (` = e, µ) reactions have been measured with the ATLAS detector at the
LHC. Comparisons are made to the theory predictions based on EPA calculations, as included in the Her-
wig++ MC generator. The corresponding data-to-EPA signal ratios for the electron and muon channels
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Photon collider search strategy for sleptons and dark matter at the LHC

Lydia Beresford1, ⇤ and Jesse Liu1, †

1Department of Physics, University of Oxford, Oxford OX1 3RH, UK

We propose a search strategy using the LHC as a photon collider to open sensitivity to scalar
lepton (slepton ˜̀) production with masses around 15 to 60 GeV above that of neutralino dark matter
�̃0
1. This region is favored by relic abundance and muon (g� 2)µ arguments. However, conventional

searches are hindered by the irreducible diboson background. We overcome this obstruction by
measuring initial state kinematics and the missing momentum four-vector in proton-tagged ultra-
peripheral collisions using forward detectors. We demonstrate sensitivity beyond LEP for slepton
masses of up to 220 GeV for 15 . �m(˜̀, �̃0

1) . 60 GeV with 100 fb�1 of 13 TeV proton collisions.
We encourage the LHC collaborations to open this forward frontier for discovering new physics.

I. INTRODUCTION

Elucidating the elementary properties of dark matter
(DM) is among the most urgent problems in fundamental
physics. The lightest neutralino �̃0

1 in supersymmetric
(SUSY) extensions of the Standard Model (SM) is one
of the most motivated DM candidates [1–3]. A favored
scenario involves scalar partners of the charged leptons
(sleptons ˜̀) being one to tens of GeV above the �̃0

1 mass.
This enables interactions that reduce the �̃0

1 cosmologi-
cal relic abundance to match the observed value [4] via a
mechanism called slepton coannihilation [5, 6]. Further-
more, partners of the muon (smuon µ̃) and neutralinos
with masses near the weak scale are a leading explana-
tion for 3 � 4� deviations between measurements of the
muon magnetic moment and SM prediction [7–10].

Remarkably, Large Hadron Collider (LHC) searches
for these key targets have no sensitivity when mass dif-
ferences are 15 . �m(˜̀, �̃0

1) . 60 GeV [11–14]. Here,
Large Electron Positron (LEP) collider limits remain the
most stringent, excluding m(˜̀) . 97 GeV [15–17]. Sen-
sitivity is hindered by an obstruction generic to all LHC
search strategies for invisible DM states and their me-
diators [18–29]: the kinematics of colliding quarks and
gluons are immeasurable. Without this initial state in-
formation, the missing momentum four-vector pmiss left
by DM can only be determined in the plane transverse
to the beam (pmiss

T ). This precludes direct DM mass re-
construction that would otherwise provide e↵ective dis-
crimination against neutrino ⌫ backgrounds.

This Letter proposes a search strategy to resolve these
longstanding problems by using the LHC as a photon col-
lider [30]. In a beam crossing, protons can undergo an
ultraperipheral collision (UPC), where photons from the
electromagnetic fields interact to produce sleptons exclu-
sively pp ! p(�� ! ˜̀̀̃ )p. The sleptons decay as ˜̀! `�̃0

1,
resulting in the very clean final state p(2` + pmiss)p of
our search: two intact protons, two leptons `, and miss-
ing momentum (Fig. 1). As the beam energy is known,
measuring the outgoing proton kinematics determines
the colliding photon momenta and thus pmiss. This ex-
perimental possibility is opened by the ATLAS Forward
Proton (AFP) [31] and CMS–TOTEM Precision Proton
Spectrometer (CT-PPS) [32, 33] forward detectors, which
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FIG. 8. Exclusive pair-production of sleptons ˜̀ via photon–photon fusion. Each slepton decays
directly to a lepton and neutralino �̃0
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FIG. 8. Exclusive pair-production of W boson pairs via photon–photon fusion in the `⌫`⌫ final
state.

FIG. 1. Exclusive pair production of (left) scalar leptons ‘slep-
tons’ ˜̀ decaying to dark matter �̃0

1 and (right) SM diboson
WW background using the LHC as a photon collider.

recorded first data in 2017 and 2016 respectively. CMS–
TOTEM moreover observed double lepton production in
high-luminosity proton-tagged events [34], demonstrat-
ing initial state reconstruction is feasible.

Photon collisions at the LHC reach su�cient rates to
probe rare processes such as SM light-by-light scatter-
ing [35, 36], anomalous gauge couplings [37, 38], and
axion-like particles [39, 40]. Nonetheless, it is widely
considered that photon fusion production of sleptons
is not competitive as a discovery window compared to
electroweak production [11–14]; existing photon collider
studies therefore focus on slepton mass measurement for
specific benchmark points [41–45]. Our proposal argues
the contrary that photon collisions play an essential role
in SUSY and DM searches. We emulate AFP/CT-PPS
proton tagging, which enables powerful background sup-
pression. We demonstrate a strategy that surpasses LEP
sensitivity in the favored 15 . �m(˜̀, �̃0

1) . 60 GeV cor-
ridor, underscoring the importance of initial state kine-
matics and pmiss for the LHC discovery program.

II. PHOTON COLLIDER SIMULATION

Electromagnetic fields surrounding ultrarelativistic
protons can be modeled as a beam of nearly on-shell pho-
tons, which is known as the equivalent photon approxi-
mation [46]. We consider pair production of electrically
charged particles X via photon fusion �� ! XX. An-
alytic expressions of their QED cross-sections ���!XX
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Figure 1: Anomalous �Z production via photon fusion with intact protons in the final state.

The operators of Eq. (2.1) induce an anomalous Z ! ��� decay [29], with a partial width that
in our notation reads

�NP(Z ! ���) =
m9

Z(2⇣
2 + 2⇣̃2 � ⇣⇣̃)

8640⇡3
. (2.2)

An anomalous �� ! �Z reaction is also induced, which is the focus of this work. We find the
unpolarized differential cross section to be 1

d�NP
��!�Z

d⌦
=

�

16⇡2s

h
(3⇣2 + 3⇣̃2 � 2⇣⇣̃)(st+ tu+ us)2 � 4(⇣2 + ⇣̃2 � ⇣⇣̃)2m2

Zstu
i
, (2.3)

where s, t, and u are the usual Mandelstam variables and � = 1�m2
Z/s for the �Z final state.

As the EFT is nonrenormalizable, a breakdown of unitarity is expected at high energies. Using
the well-known partial wave analysis [30] we can estimate for what values of ⇣, ⇣̃ and s the theory
remains unitary. By imposing unitarity on the S-wave of the EFT amplitudes and neglecting the
Z boson mass one finds the conditions (see [4] for details on similar amplitudes)

|⇣ + ⇣̃|s2 < 4⇡ , |⇣ � ⇣̃|s2 <
12⇡

5
. (2.4)

As most of the recorded �Z events have
p
s below 1 TeV, we expect the EFT to remain unitary for

couplings up to
⇣, ⇣̃ < (10�12

� 10�11) GeV�4 . (2.5)

The sensitivities we will derive in Sec. 7 are much lower than these unitarity bounds. However, as a
caveat, we stress that unless the underlying New Physics model is very strongly coupled, the EFT
typically breaks down before unitarity is violated.

3 Contributions from New Physics

Loops of heavy particles charged under SU(2)L ⇥ U(1)Y contribute to the ���Z couplings. These
loop contributions only depend on the mass and quantum numbers of the particle in the loop and
can thus be given in full generality. Denoting hypercharge by Y , sine and cosine of the Weinberg
angle by sw and cw and labeling the SU(2)L representation by its dimension d, we can write [4]

⇣
⇣, ⇣̃

⌘
=

⇣
cs, c̃s

⌘ ↵2
em

swcw m4
d

✓
c2w

3d4 � 10d2 + 7

240
+ (c2w � s2w)

(d2 � 1)Y 2

4
� s2wY

4

◆
, (3.1)

1
It has been noted in [29] that the operators O± = O

�Z
± Õ

�Z
do not interfere. This property provides

a cross check of our result Eq. (2.3), as in this basis we get ⇣± = ⇣ ± ⇣̃, (3⇣2 + 3⇣̃2 � 2⇣⇣̃) = ⇣2+ + 2⇣2� and

4(⇣2 + ⇣̃2 � ⇣⇣̃) = ⇣2+ + 3⇣2� , hence a vanishing interference.

3
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• Exclusive/semi-exclusive production: colour singlet photon naturally leads 
to events with intact protons/rapidity gaps in final state.

20

Lepton pair production

• ATLAS (arXiv:1506.07098) have measured exclusive   and    pair 
production      use                    to compare to this.

e µ

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: Phys. Lett. B. CERN-PH-EP-2015-134
18th August 2015

Measurement of exclusive �� ! `+`� production in proton–proton
collisions at

p
s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter reports a measurement of the exclusive �� ! `+`� (` = e, µ) cross-section in
proton–proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment
at the LHC, based on an integrated luminosity of 4.6 fb�1. For the electron or muon pairs
satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to
extract the fiducial cross-sections. The cross-section in the electron channel is determined to
be�excl.

��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb for a phase-space region with invariant
mass of the electron pairs greater than 24 GeV, in which both electrons have transverse
momentum pT > 12 GeV and pseudorapidity |⌘| < 2.4. For muon pairs with invariant mass
greater than 20 GeV, muon transverse momentum pT > 10 GeV and pseudorapidity |⌘| <
2.4, the cross-section is determined to be�excl.

��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb.
When proton absorptive e↵ects due to the finite size of the proton are taken into account in
the theory calculation, the measured cross-sections are found to be consistent with the theory
prediction.

c� 2015 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.
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Table 3: Definition of the electron and muon channel fiducial regions for which the exclusive cross-sections are
evaluated.

Variable Electron channel Muon channel
p`T > 12 GeV > 10 GeV
|⌘` | < 2.4 < 2.4
m`+`� > 24 GeV > 20 GeV

the standard dipole form-factors and the improved model parameterisation including pQCD corrections
from Ref. [60]. The latter includes a fit uncertainty and the prediction furthest away from the dipole
form-factors is chosen.

Similarly, for the µ+µ� channel,

Rexcl.
��!µ+µ� = 0.791 ± 0.041 (stat.) ± 0.026 (syst.) ± 0.013 (theor.) ,

�EPA
��!µ+µ� = 0.794 ± 0.013 (theor.) pb .

The resulting fiducial cross-section for the electron channel is measured to be

�excl.
��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb .

This value can be compared to the theoretical prediction, including absorptive corrections to account for
the finite size of the proton [10]:

�EPA, corr.
��!e+e� = 0.398 ± 0.007 (theor.) pb .

For the muon channel, the fiducial cross-section is measured to be

�excl.
��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb ,

to be compared with [10]:
�EPA, corr.
��!µ+µ� = 0.638 ± 0.011 (theor.) pb .

The uncertainty of each prediction includes an additional 0.8% uncertainty related to the modelling of
proton absorptive corrections. It is evaluated by varying the e↵ective transverse size of the proton by 3%,
according to Ref. [64]. Figure 4 shows the ratios of the measured cross-sections to the EPA calculations
and to the prediction with the inclusion of absorptive corrections. The measurements are in agreement
with the predicted values corrected for proton absorptive e↵ects. The figure includes a similar CMS
cross-section measurement [18].

8 Conclusion

Using 4.6 fb�1 of data from pp collisions at a centre-of-mass energy of 7 TeV the fiducial cross-sections
for exclusive �� ! `+`� (` = e, µ) reactions have been measured with the ATLAS detector at the
LHC. Comparisons are made to the theory predictions based on EPA calculations, as included in the Her-
wig++ MC generator. The corresponding data-to-EPA signal ratios for the electron and muon channels

12

) SuperChic
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Why bother?
• In era of high precision phenomenology at the LHC: NNLO 
calculations rapidly becoming the ‘standard’. However:

• Thus at this level of accuracy, must consider a proper account of 
EW corrections. At LHC these can be relevant for a range of 
processes (                                                         ).

↵2
S(MZ) ⇠ 0.1182 ⇠ 1

70
↵QED(MZ) ⇠

1

130

! EW and NNLO QCD corrections can be comparable in size.

W , Z, WH, ZH, WW , tt, jets...

R

• For consistent treatment of these, must 
incorporate QED in initial state: photon-
initiated production.

X Rapidity Gaps

• Clean, ~ pure QED process at LHC:

� Probe of BSM (anomalous couplings, ALPs, 
SUSY…). LHL et al., JHEP 1904 (2019) 010, EPJC 72 (2012) 1969, C. 

Baldenegro et al., JHEP 1806 (2018) 131, JHEP 1706 (2017) 
141, L. Beresford and J. Liu, arXiv:1908.05180, PRL 123 
(2019) no.14, 141801…

Photon collider search strategy for sleptons and dark matter at the LHC

Lydia Beresford1, ⇤ and Jesse Liu1, †

1Department of Physics, University of Oxford, Oxford OX1 3RH, UK

We propose a search strategy using the LHC as a photon collider to open sensitivity to scalar
lepton (slepton ˜̀) production with masses around 15 to 60 GeV above that of neutralino dark matter
�̃0
1. This region is favored by relic abundance and muon (g� 2)µ arguments. However, conventional

searches are hindered by the irreducible diboson background. We overcome this obstruction by
measuring initial state kinematics and the missing momentum four-vector in proton-tagged ultra-
peripheral collisions using forward detectors. We demonstrate sensitivity beyond LEP for slepton
masses of up to 220 GeV for 15 . �m(˜̀, �̃0

1) . 60 GeV with 100 fb�1 of 13 TeV proton collisions.
We encourage the LHC collaborations to open this forward frontier for discovering new physics.

I. INTRODUCTION

Elucidating the elementary properties of dark matter
(DM) is among the most urgent problems in fundamental
physics. The lightest neutralino �̃0

1 in supersymmetric
(SUSY) extensions of the Standard Model (SM) is one
of the most motivated DM candidates [1–3]. A favored
scenario involves scalar partners of the charged leptons
(sleptons ˜̀) being one to tens of GeV above the �̃0

1 mass.
This enables interactions that reduce the �̃0

1 cosmologi-
cal relic abundance to match the observed value [4] via a
mechanism called slepton coannihilation [5, 6]. Further-
more, partners of the muon (smuon µ̃) and neutralinos
with masses near the weak scale are a leading explana-
tion for 3 � 4� deviations between measurements of the
muon magnetic moment and SM prediction [7–10].

Remarkably, Large Hadron Collider (LHC) searches
for these key targets have no sensitivity when mass dif-
ferences are 15 . �m(˜̀, �̃0

1) . 60 GeV [11–14]. Here,
Large Electron Positron (LEP) collider limits remain the
most stringent, excluding m(˜̀) . 97 GeV [15–17]. Sen-
sitivity is hindered by an obstruction generic to all LHC
search strategies for invisible DM states and their me-
diators [18–29]: the kinematics of colliding quarks and
gluons are immeasurable. Without this initial state in-
formation, the missing momentum four-vector pmiss left
by DM can only be determined in the plane transverse
to the beam (pmiss

T ). This precludes direct DM mass re-
construction that would otherwise provide e↵ective dis-
crimination against neutrino ⌫ backgrounds.

This Letter proposes a search strategy to resolve these
longstanding problems by using the LHC as a photon col-
lider [30]. In a beam crossing, protons can undergo an
ultraperipheral collision (UPC), where photons from the
electromagnetic fields interact to produce sleptons exclu-
sively pp ! p(�� ! ˜̀̀̃ )p. The sleptons decay as ˜̀! `�̃0

1,
resulting in the very clean final state p(2` + pmiss)p of
our search: two intact protons, two leptons `, and miss-
ing momentum (Fig. 1). As the beam energy is known,
measuring the outgoing proton kinematics determines
the colliding photon momenta and thus pmiss. This ex-
perimental possibility is opened by the ATLAS Forward
Proton (AFP) [31] and CMS–TOTEM Precision Proton
Spectrometer (CT-PPS) [32, 33] forward detectors, which
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FIG. 8. Exclusive pair-production of sleptons ˜̀ via photon–photon fusion. Each slepton decays
directly to a lepton and neutralino �̃0

1.
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FIG. 8. Exclusive pair-production of W boson pairs via photon–photon fusion in the `⌫`⌫ final
state.

FIG. 1. Exclusive pair production of (left) scalar leptons ‘slep-
tons’ ˜̀ decaying to dark matter �̃0

1 and (right) SM diboson
WW background using the LHC as a photon collider.

recorded first data in 2017 and 2016 respectively. CMS–
TOTEM moreover observed double lepton production in
high-luminosity proton-tagged events [34], demonstrat-
ing initial state reconstruction is feasible.

Photon collisions at the LHC reach su�cient rates to
probe rare processes such as SM light-by-light scatter-
ing [35, 36], anomalous gauge couplings [37, 38], and
axion-like particles [39, 40]. Nonetheless, it is widely
considered that photon fusion production of sleptons
is not competitive as a discovery window compared to
electroweak production [11–14]; existing photon collider
studies therefore focus on slepton mass measurement for
specific benchmark points [41–45]. Our proposal argues
the contrary that photon collisions play an essential role
in SUSY and DM searches. We emulate AFP/CT-PPS
proton tagging, which enables powerful background sup-
pression. We demonstrate a strategy that surpasses LEP
sensitivity in the favored 15 . �m(˜̀, �̃0

1) . 60 GeV cor-
ridor, underscoring the importance of initial state kine-
matics and pmiss for the LHC discovery program.

II. PHOTON COLLIDER SIMULATION

Electromagnetic fields surrounding ultrarelativistic
protons can be modeled as a beam of nearly on-shell pho-
tons, which is known as the equivalent photon approxi-
mation [46]. We consider pair production of electrically
charged particles X via photon fusion �� ! XX. An-
alytic expressions of their QED cross-sections ���!XX
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Figure 1: Anomalous �Z production via photon fusion with intact protons in the final state.

The operators of Eq. (2.1) induce an anomalous Z ! ��� decay [29], with a partial width that
in our notation reads

�NP(Z ! ���) =
m9

Z(2⇣
2 + 2⇣̃2 � ⇣⇣̃)

8640⇡3
. (2.2)

An anomalous �� ! �Z reaction is also induced, which is the focus of this work. We find the
unpolarized differential cross section to be 1

d�NP
��!�Z

d⌦
=

�

16⇡2s

h
(3⇣2 + 3⇣̃2 � 2⇣⇣̃)(st+ tu+ us)2 � 4(⇣2 + ⇣̃2 � ⇣⇣̃)2m2

Zstu
i
, (2.3)

where s, t, and u are the usual Mandelstam variables and � = 1�m2
Z/s for the �Z final state.

As the EFT is nonrenormalizable, a breakdown of unitarity is expected at high energies. Using
the well-known partial wave analysis [30] we can estimate for what values of ⇣, ⇣̃ and s the theory
remains unitary. By imposing unitarity on the S-wave of the EFT amplitudes and neglecting the
Z boson mass one finds the conditions (see [4] for details on similar amplitudes)

|⇣ + ⇣̃|s2 < 4⇡ , |⇣ � ⇣̃|s2 <
12⇡

5
. (2.4)

As most of the recorded �Z events have
p
s below 1 TeV, we expect the EFT to remain unitary for

couplings up to
⇣, ⇣̃ < (10�12

� 10�11) GeV�4 . (2.5)

The sensitivities we will derive in Sec. 7 are much lower than these unitarity bounds. However, as a
caveat, we stress that unless the underlying New Physics model is very strongly coupled, the EFT
typically breaks down before unitarity is violated.

3 Contributions from New Physics

Loops of heavy particles charged under SU(2)L ⇥ U(1)Y contribute to the ���Z couplings. These
loop contributions only depend on the mass and quantum numbers of the particle in the loop and
can thus be given in full generality. Denoting hypercharge by Y , sine and cosine of the Weinberg
angle by sw and cw and labeling the SU(2)L representation by its dimension d, we can write [4]

⇣
⇣, ⇣̃

⌘
=

⇣
cs, c̃s

⌘ ↵2
em

swcw m4
d

✓
c2w

3d4 � 10d2 + 7

240
+ (c2w � s2w)

(d2 � 1)Y 2

4
� s2wY

4

◆
, (3.1)

1
It has been noted in [29] that the operators O± = O

�Z
± Õ

�Z
do not interfere. This property provides

a cross check of our result Eq. (2.3), as in this basis we get ⇣± = ⇣ ± ⇣̃, (3⇣2 + 3⇣̃2 � 2⇣⇣̃) = ⇣2+ + 2⇣2� and

4(⇣2 + ⇣̃2 � ⇣⇣̃) = ⇣2+ + 3⇣2� , hence a vanishing interference.

3



• SF approach can provide high precision predictions for 
inclusive PI production.

• But also uniquely suited to deal with situation where we ask for limited 
hadronic activity/intact protons in PI process:

contribution is included, although even here the uncertainty at lower mass is again significantly
larger than the corresponding PDF uncertainty and even at higher masses of the same order.
However, such corrections are often not available (publicly or otherwise) for LHC processes.
Moreover, even if these corrections are eventually explicitly included, one will still introduce an
(albeit smaller) source of uncertainty due to the residual scale dependence that can be bypassed
entirely by simply working with the exact result, as calculated in the structure function approach.
More significantly from a phenomenological point of view, we have seen that once one starts to
include cuts, or consider observables that are sensitive to the photon transverse momenta, the
di↵erence between even the NLO prediction (or that using the k?–factorization approach) can
again be rather large.

We note that the magnitude of these scale variation uncertainties in the inclusive cross
sections are roughly consistent with the LO and NLO uncertainty bands on the photon PDF
presented in Section 9 of [13], being of a similar origin. However, here the final ‘missing higher
order’ uncertainty derived within this approach is, as discussed in this work (see footnote 11),
only relevant for the case that one works at NLO for the photon–initiated contributions, and
will otherwise drastically underestimate the corresponding uncertainty, as we have seen above.
Moreover even if one works at NLO, then the uncertainty that they include, which comes from
the manner in which one defines the photon PDF and the factorization scale choice which
corresponds to it, is entirely absent in the structure function calculation. More significantly,
while this uncertainty is estimated to be rather small in [13], at the ⇠ 1% level or less, the
scale variation uncertainty in the NLO collinear cross section is not entirely accounted for by
this, and is in many cases larger, as we have seen. On the other hand, as discussed at the
end of Section 2, other small sources of uncertainty from missing higher–order non–factorizable
corrections, remain in both the structure function and collinear calculations.

4 Hadron–hadron collisions

We now consider some phenomenological implications of the results above for photon–initiated
production at the LHC. Before doing so, we briefly discuss the connection between the structure
function result (1) and the collinear prediction via the photon PDF, similarly to the lepton–
hadron case considered before. As in [33] we can write

�pp =
1

2s

Z
dx1dx2 d

2
q1?d

2
q2?d�↵(Q2

1)↵(Q
2
2)
⇢
µµ0

1 ⇢
⌫⌫0
2 M

⇤
µ0⌫0Mµ⌫

q21q
2
2

�
(4)(q1 + q2 � pX) , (29)

where xi and qi? are the photon momentum fractions (see [33] for precise definitions) and trans-
verse momenta, respectively. The amplitude squared M

⇤
µ0⌫0Mµ⌫ permits a general expansion [7]

M
⇤
µ0⌫0Mµ⌫ = Rµµ0R⌫⌫0

1

4

X

�1�2

|M�1�2 |2 + · · · , (30)

where we omit various terms that vanish when taking the Q1,2 ⌧ M
2
X limit, or after integration

over the photon azimuthal angle. Here R is the metric tensor that is transverse to the photon
momenta q1,2:

R
µ⌫ = �g

µ⌫ +
(q1q1)(q

µ
1 q

⌫
2 + q

⌫
1q

µ
2 ) +Q

2
1q

µ
2 q

⌫
2 +Q

2
2q

µ
1 q

⌫
1

(q1q2)2 �Q2
1Q

2
2

. (31)
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★Can isolate elastic component of        to give exclusive prediction 
(for both proton and ion beams).

★Fully differential in photon               invariant mass of proton 
dissociation system (higher            more hadronic activity).

F1,2
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1 Introduction

When proton–proton (pp) beams collide at the LHC, typically rare photon–photon induced (��) inter-
actions occur at perceptible rate and provide a unique opportunity to study high-energy electroweak
processes [1]. Compared to other final states, the dilepton production is a standard candle process of
the photon-induced production mechanism, thanks to its sizeable cross-section. Using pp collisions at
a centre-of-mass energy of

p
s = 7 TeV, measurements of pp(��) ! µ+µ�pp production (referred to

as exclusive �� ! µ+µ�) were performed by the ATLAS and CMS collaborations [2, 3]. The exclusive
�� ! e+e� process was also measured [3, 4]. A similar experimental signature has been used to study
the �� ! W+W� reaction [5–7].

The exclusive �� ! µ+µ� production process competes with the two-photon interactions involving
single- or double-proton dissociation due to the virtual photon exchange (Figure 1 (a–c)). The electro-
magnetic (EM) break-up of the proton typically results in a production of particles at small angles to the
beam direction, which can mimic the exclusive process. However, the proton-dissociative processes have
significantly di↵erent kinematic distributions compared to the exclusive reaction, allowing an e↵ective
separation of the di↵erent production mechanisms.
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Figure 1: Schematic diagrams for (a) exclusive, (b) single-proton dissociative and (c) double-proton dissociative
two-photon production of muon pairs in pp collisions. The e↵ect of additional interactions between the protons is
shown in (d).

In general, the photon-induced production of lepton pairs contributes up to a few percent to the inclusive
dilepton production at LHC energies [8–10].

In order to reproduce the data, the calculations of such photon-induced reactions, in particular exclusive
�� ! µ+µ� production, need to take into account the proton absorptive e↵ects [3]. They are mainly
related to additional gluon interactions between the protons (or proton remnants), shown in Figure 1 (d),
which take place in addition to the QED process. The size of the absorption is not expected to be the
same for exclusive and dissociative processes; it may also depend on the reaction kinematics. These
e↵ects lead to the suppression of exclusive cross-sections (typically around 10–20%) by producing extra
hadronic activity in the event besides the final-state muons. Recent phenomenological studies suggest that
the exclusive cross-sections are suppressed, with a survival factor that decreases with mass [11, 12].

In this paper, a measurement of exclusive dimuon production in pp collisions at
p

s = 13 TeV is presen-
ted for muon pairs with invariant mass 12 GeV < mµ+µ� < 70 GeV. The di↵erential cross-sections,
d�/dmµ+µ� , are determined within a fiducial acceptance region. In the region 30 GeV < mµ+µ� < 70 GeV,
the minimum transverse momentum of each muon is required to be 10 GeV. For 12 GeV < mµ+µ� <
30 GeV, the minimum muon transverse momentum is reduced to 6 GeV by taking advantage of the lower
trigger thresholds available by making additional requirements on muon-pair topology. In addition, both

2
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• Having generated exclusive/semi-exclusive lepton pair production events, 
interface to Pythia for showering/hadronisation of dissociation system.
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• Exclusive/semi-exclusive production: colour singlet photon naturally leads 
to events with intact protons/rapidity gaps in final state.

20

Lepton pair production

• ATLAS (arXiv:1506.07098) have measured exclusive   and    pair 
production      use                    to compare to this.

e µ

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: Phys. Lett. B. CERN-PH-EP-2015-134
18th August 2015

Measurement of exclusive �� ! `+`� production in proton–proton
collisions at

p
s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter reports a measurement of the exclusive �� ! `+`� (` = e, µ) cross-section in
proton–proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment
at the LHC, based on an integrated luminosity of 4.6 fb�1. For the electron or muon pairs
satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to
extract the fiducial cross-sections. The cross-section in the electron channel is determined to
be�excl.

��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb for a phase-space region with invariant
mass of the electron pairs greater than 24 GeV, in which both electrons have transverse
momentum pT > 12 GeV and pseudorapidity |⌘| < 2.4. For muon pairs with invariant mass
greater than 20 GeV, muon transverse momentum pT > 10 GeV and pseudorapidity |⌘| <
2.4, the cross-section is determined to be�excl.

��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb.
When proton absorptive e↵ects due to the finite size of the proton are taken into account in
the theory calculation, the measured cross-sections are found to be consistent with the theory
prediction.

c� 2015 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.

ar
X

iv
:1

50
6.

07
09

8v
2 

 [h
ep

-e
x]

  1
7 

A
ug

 2
01

5

Table 3: Definition of the electron and muon channel fiducial regions for which the exclusive cross-sections are
evaluated.

Variable Electron channel Muon channel
p`T > 12 GeV > 10 GeV
|⌘` | < 2.4 < 2.4
m`+`� > 24 GeV > 20 GeV

the standard dipole form-factors and the improved model parameterisation including pQCD corrections
from Ref. [60]. The latter includes a fit uncertainty and the prediction furthest away from the dipole
form-factors is chosen.

Similarly, for the µ+µ� channel,

Rexcl.
��!µ+µ� = 0.791 ± 0.041 (stat.) ± 0.026 (syst.) ± 0.013 (theor.) ,

�EPA
��!µ+µ� = 0.794 ± 0.013 (theor.) pb .

The resulting fiducial cross-section for the electron channel is measured to be

�excl.
��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb .

This value can be compared to the theoretical prediction, including absorptive corrections to account for
the finite size of the proton [10]:

�EPA, corr.
��!e+e� = 0.398 ± 0.007 (theor.) pb .

For the muon channel, the fiducial cross-section is measured to be

�excl.
��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb ,

to be compared with [10]:
�EPA, corr.
��!µ+µ� = 0.638 ± 0.011 (theor.) pb .

The uncertainty of each prediction includes an additional 0.8% uncertainty related to the modelling of
proton absorptive corrections. It is evaluated by varying the e↵ective transverse size of the proton by 3%,
according to Ref. [64]. Figure 4 shows the ratios of the measured cross-sections to the EPA calculations
and to the prediction with the inclusion of absorptive corrections. The measurements are in agreement
with the predicted values corrected for proton absorptive e↵ects. The figure includes a similar CMS
cross-section measurement [18].

8 Conclusion

Using 4.6 fb�1 of data from pp collisions at a centre-of-mass energy of 7 TeV the fiducial cross-sections
for exclusive �� ! `+`� (` = e, µ) reactions have been measured with the ATLAS detector at the
LHC. Comparisons are made to the theory predictions based on EPA calculations, as included in the Her-
wig++ MC generator. The corresponding data-to-EPA signal ratios for the electron and muon channels
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Photon collider search strategy for sleptons and dark matter at the LHC

Lydia Beresford1, ⇤ and Jesse Liu1, †

1Department of Physics, University of Oxford, Oxford OX1 3RH, UK

We propose a search strategy using the LHC as a photon collider to open sensitivity to scalar
lepton (slepton ˜̀) production with masses around 15 to 60 GeV above that of neutralino dark matter
�̃0
1. This region is favored by relic abundance and muon (g� 2)µ arguments. However, conventional

searches are hindered by the irreducible diboson background. We overcome this obstruction by
measuring initial state kinematics and the missing momentum four-vector in proton-tagged ultra-
peripheral collisions using forward detectors. We demonstrate sensitivity beyond LEP for slepton
masses of up to 220 GeV for 15 . �m(˜̀, �̃0

1) . 60 GeV with 100 fb�1 of 13 TeV proton collisions.
We encourage the LHC collaborations to open this forward frontier for discovering new physics.

I. INTRODUCTION

Elucidating the elementary properties of dark matter
(DM) is among the most urgent problems in fundamental
physics. The lightest neutralino �̃0

1 in supersymmetric
(SUSY) extensions of the Standard Model (SM) is one
of the most motivated DM candidates [1–3]. A favored
scenario involves scalar partners of the charged leptons
(sleptons ˜̀) being one to tens of GeV above the �̃0

1 mass.
This enables interactions that reduce the �̃0

1 cosmologi-
cal relic abundance to match the observed value [4] via a
mechanism called slepton coannihilation [5, 6]. Further-
more, partners of the muon (smuon µ̃) and neutralinos
with masses near the weak scale are a leading explana-
tion for 3 � 4� deviations between measurements of the
muon magnetic moment and SM prediction [7–10].

Remarkably, Large Hadron Collider (LHC) searches
for these key targets have no sensitivity when mass dif-
ferences are 15 . �m(˜̀, �̃0

1) . 60 GeV [11–14]. Here,
Large Electron Positron (LEP) collider limits remain the
most stringent, excluding m(˜̀) . 97 GeV [15–17]. Sen-
sitivity is hindered by an obstruction generic to all LHC
search strategies for invisible DM states and their me-
diators [18–29]: the kinematics of colliding quarks and
gluons are immeasurable. Without this initial state in-
formation, the missing momentum four-vector pmiss left
by DM can only be determined in the plane transverse
to the beam (pmiss

T ). This precludes direct DM mass re-
construction that would otherwise provide e↵ective dis-
crimination against neutrino ⌫ backgrounds.

This Letter proposes a search strategy to resolve these
longstanding problems by using the LHC as a photon col-
lider [30]. In a beam crossing, protons can undergo an
ultraperipheral collision (UPC), where photons from the
electromagnetic fields interact to produce sleptons exclu-
sively pp ! p(�� ! ˜̀̀̃ )p. The sleptons decay as ˜̀! `�̃0

1,
resulting in the very clean final state p(2` + pmiss)p of
our search: two intact protons, two leptons `, and miss-
ing momentum (Fig. 1). As the beam energy is known,
measuring the outgoing proton kinematics determines
the colliding photon momenta and thus pmiss. This ex-
perimental possibility is opened by the ATLAS Forward
Proton (AFP) [31] and CMS–TOTEM Precision Proton
Spectrometer (CT-PPS) [32, 33] forward detectors, which
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FIG. 8. Exclusive pair-production of W boson pairs via photon–photon fusion in the `⌫`⌫ final
state.

FIG. 1. Exclusive pair production of (left) scalar leptons ‘slep-
tons’ ˜̀ decaying to dark matter �̃0

1 and (right) SM diboson
WW background using the LHC as a photon collider.

recorded first data in 2017 and 2016 respectively. CMS–
TOTEM moreover observed double lepton production in
high-luminosity proton-tagged events [34], demonstrat-
ing initial state reconstruction is feasible.

Photon collisions at the LHC reach su�cient rates to
probe rare processes such as SM light-by-light scatter-
ing [35, 36], anomalous gauge couplings [37, 38], and
axion-like particles [39, 40]. Nonetheless, it is widely
considered that photon fusion production of sleptons
is not competitive as a discovery window compared to
electroweak production [11–14]; existing photon collider
studies therefore focus on slepton mass measurement for
specific benchmark points [41–45]. Our proposal argues
the contrary that photon collisions play an essential role
in SUSY and DM searches. We emulate AFP/CT-PPS
proton tagging, which enables powerful background sup-
pression. We demonstrate a strategy that surpasses LEP
sensitivity in the favored 15 . �m(˜̀, �̃0

1) . 60 GeV cor-
ridor, underscoring the importance of initial state kine-
matics and pmiss for the LHC discovery program.

II. PHOTON COLLIDER SIMULATION

Electromagnetic fields surrounding ultrarelativistic
protons can be modeled as a beam of nearly on-shell pho-
tons, which is known as the equivalent photon approxi-
mation [46]. We consider pair production of electrically
charged particles X via photon fusion �� ! XX. An-
alytic expressions of their QED cross-sections ���!XX
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Figure 1: Anomalous �Z production via photon fusion with intact protons in the final state.

The operators of Eq. (2.1) induce an anomalous Z ! ��� decay [29], with a partial width that
in our notation reads

�NP(Z ! ���) =
m9

Z(2⇣
2 + 2⇣̃2 � ⇣⇣̃)

8640⇡3
. (2.2)

An anomalous �� ! �Z reaction is also induced, which is the focus of this work. We find the
unpolarized differential cross section to be 1

d�NP
��!�Z

d⌦
=

�

16⇡2s

h
(3⇣2 + 3⇣̃2 � 2⇣⇣̃)(st+ tu+ us)2 � 4(⇣2 + ⇣̃2 � ⇣⇣̃)2m2

Zstu
i
, (2.3)

where s, t, and u are the usual Mandelstam variables and � = 1�m2
Z/s for the �Z final state.

As the EFT is nonrenormalizable, a breakdown of unitarity is expected at high energies. Using
the well-known partial wave analysis [30] we can estimate for what values of ⇣, ⇣̃ and s the theory
remains unitary. By imposing unitarity on the S-wave of the EFT amplitudes and neglecting the
Z boson mass one finds the conditions (see [4] for details on similar amplitudes)

|⇣ + ⇣̃|s2 < 4⇡ , |⇣ � ⇣̃|s2 <
12⇡

5
. (2.4)

As most of the recorded �Z events have
p
s below 1 TeV, we expect the EFT to remain unitary for

couplings up to
⇣, ⇣̃ < (10�12

� 10�11) GeV�4 . (2.5)

The sensitivities we will derive in Sec. 7 are much lower than these unitarity bounds. However, as a
caveat, we stress that unless the underlying New Physics model is very strongly coupled, the EFT
typically breaks down before unitarity is violated.

3 Contributions from New Physics

Loops of heavy particles charged under SU(2)L ⇥ U(1)Y contribute to the ���Z couplings. These
loop contributions only depend on the mass and quantum numbers of the particle in the loop and
can thus be given in full generality. Denoting hypercharge by Y , sine and cosine of the Weinberg
angle by sw and cw and labeling the SU(2)L representation by its dimension d, we can write [4]

⇣
⇣, ⇣̃

⌘
=

⇣
cs, c̃s

⌘ ↵2
em

swcw m4
d

✓
c2w

3d4 � 10d2 + 7

240
+ (c2w � s2w)

(d2 � 1)Y 2

4
� s2wY

4

◆
, (3.1)

1
It has been noted in [29] that the operators O± = O

�Z
± Õ

�Z
do not interfere. This property provides

a cross check of our result Eq. (2.3), as in this basis we get ⇣± = ⇣ ± ⇣̃, (3⇣2 + 3⇣̃2 � 2⇣⇣̃) = ⇣2+ + 2⇣2� and

4(⇣2 + ⇣̃2 � ⇣⇣̃) = ⇣2+ + 3⇣2� , hence a vanishing interference.
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• Exclusive/semi-exclusive production: colour singlet photon naturally leads 
to events with intact protons/rapidity gaps in final state.
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Lepton pair production

• ATLAS (arXiv:1506.07098) have measured exclusive   and    pair 
production      use                    to compare to this.

e µ

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: Phys. Lett. B. CERN-PH-EP-2015-134
18th August 2015

Measurement of exclusive �� ! `+`� production in proton–proton
collisions at

p
s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter reports a measurement of the exclusive �� ! `+`� (` = e, µ) cross-section in
proton–proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment
at the LHC, based on an integrated luminosity of 4.6 fb�1. For the electron or muon pairs
satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to
extract the fiducial cross-sections. The cross-section in the electron channel is determined to
be�excl.

��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb for a phase-space region with invariant
mass of the electron pairs greater than 24 GeV, in which both electrons have transverse
momentum pT > 12 GeV and pseudorapidity |⌘| < 2.4. For muon pairs with invariant mass
greater than 20 GeV, muon transverse momentum pT > 10 GeV and pseudorapidity |⌘| <
2.4, the cross-section is determined to be�excl.

��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb.
When proton absorptive e↵ects due to the finite size of the proton are taken into account in
the theory calculation, the measured cross-sections are found to be consistent with the theory
prediction.

c� 2015 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.
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Table 3: Definition of the electron and muon channel fiducial regions for which the exclusive cross-sections are
evaluated.

Variable Electron channel Muon channel
p`T > 12 GeV > 10 GeV
|⌘` | < 2.4 < 2.4
m`+`� > 24 GeV > 20 GeV

the standard dipole form-factors and the improved model parameterisation including pQCD corrections
from Ref. [60]. The latter includes a fit uncertainty and the prediction furthest away from the dipole
form-factors is chosen.

Similarly, for the µ+µ� channel,

Rexcl.
��!µ+µ� = 0.791 ± 0.041 (stat.) ± 0.026 (syst.) ± 0.013 (theor.) ,

�EPA
��!µ+µ� = 0.794 ± 0.013 (theor.) pb .

The resulting fiducial cross-section for the electron channel is measured to be

�excl.
��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb .

This value can be compared to the theoretical prediction, including absorptive corrections to account for
the finite size of the proton [10]:

�EPA, corr.
��!e+e� = 0.398 ± 0.007 (theor.) pb .

For the muon channel, the fiducial cross-section is measured to be

�excl.
��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb ,

to be compared with [10]:
�EPA, corr.
��!µ+µ� = 0.638 ± 0.011 (theor.) pb .

The uncertainty of each prediction includes an additional 0.8% uncertainty related to the modelling of
proton absorptive corrections. It is evaluated by varying the e↵ective transverse size of the proton by 3%,
according to Ref. [64]. Figure 4 shows the ratios of the measured cross-sections to the EPA calculations
and to the prediction with the inclusion of absorptive corrections. The measurements are in agreement
with the predicted values corrected for proton absorptive e↵ects. The figure includes a similar CMS
cross-section measurement [18].

8 Conclusion

Using 4.6 fb�1 of data from pp collisions at a centre-of-mass energy of 7 TeV the fiducial cross-sections
for exclusive �� ! `+`� (` = e, µ) reactions have been measured with the ATLAS detector at the
LHC. Comparisons are made to the theory predictions based on EPA calculations, as included in the Her-
wig++ MC generator. The corresponding data-to-EPA signal ratios for the electron and muon channels
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Photon collider search strategy for sleptons and dark matter at the LHC

Lydia Beresford1, ⇤ and Jesse Liu1, †

1Department of Physics, University of Oxford, Oxford OX1 3RH, UK

We propose a search strategy using the LHC as a photon collider to open sensitivity to scalar
lepton (slepton ˜̀) production with masses around 15 to 60 GeV above that of neutralino dark matter
�̃0
1. This region is favored by relic abundance and muon (g� 2)µ arguments. However, conventional

searches are hindered by the irreducible diboson background. We overcome this obstruction by
measuring initial state kinematics and the missing momentum four-vector in proton-tagged ultra-
peripheral collisions using forward detectors. We demonstrate sensitivity beyond LEP for slepton
masses of up to 220 GeV for 15 . �m(˜̀, �̃0

1) . 60 GeV with 100 fb�1 of 13 TeV proton collisions.
We encourage the LHC collaborations to open this forward frontier for discovering new physics.

I. INTRODUCTION

Elucidating the elementary properties of dark matter
(DM) is among the most urgent problems in fundamental
physics. The lightest neutralino �̃0

1 in supersymmetric
(SUSY) extensions of the Standard Model (SM) is one
of the most motivated DM candidates [1–3]. A favored
scenario involves scalar partners of the charged leptons
(sleptons ˜̀) being one to tens of GeV above the �̃0

1 mass.
This enables interactions that reduce the �̃0

1 cosmologi-
cal relic abundance to match the observed value [4] via a
mechanism called slepton coannihilation [5, 6]. Further-
more, partners of the muon (smuon µ̃) and neutralinos
with masses near the weak scale are a leading explana-
tion for 3 � 4� deviations between measurements of the
muon magnetic moment and SM prediction [7–10].

Remarkably, Large Hadron Collider (LHC) searches
for these key targets have no sensitivity when mass dif-
ferences are 15 . �m(˜̀, �̃0

1) . 60 GeV [11–14]. Here,
Large Electron Positron (LEP) collider limits remain the
most stringent, excluding m(˜̀) . 97 GeV [15–17]. Sen-
sitivity is hindered by an obstruction generic to all LHC
search strategies for invisible DM states and their me-
diators [18–29]: the kinematics of colliding quarks and
gluons are immeasurable. Without this initial state in-
formation, the missing momentum four-vector pmiss left
by DM can only be determined in the plane transverse
to the beam (pmiss

T ). This precludes direct DM mass re-
construction that would otherwise provide e↵ective dis-
crimination against neutrino ⌫ backgrounds.

This Letter proposes a search strategy to resolve these
longstanding problems by using the LHC as a photon col-
lider [30]. In a beam crossing, protons can undergo an
ultraperipheral collision (UPC), where photons from the
electromagnetic fields interact to produce sleptons exclu-
sively pp ! p(�� ! ˜̀̀̃ )p. The sleptons decay as ˜̀! `�̃0

1,
resulting in the very clean final state p(2` + pmiss)p of
our search: two intact protons, two leptons `, and miss-
ing momentum (Fig. 1). As the beam energy is known,
measuring the outgoing proton kinematics determines
the colliding photon momenta and thus pmiss. This ex-
perimental possibility is opened by the ATLAS Forward
Proton (AFP) [31] and CMS–TOTEM Precision Proton
Spectrometer (CT-PPS) [32, 33] forward detectors, which
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FIG. 8. Exclusive pair-production of sleptons ˜̀ via photon–photon fusion. Each slepton decays
directly to a lepton and neutralino �̃0
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FIG. 8. Exclusive pair-production of W boson pairs via photon–photon fusion in the `⌫`⌫ final
state.

FIG. 1. Exclusive pair production of (left) scalar leptons ‘slep-
tons’ ˜̀ decaying to dark matter �̃0

1 and (right) SM diboson
WW background using the LHC as a photon collider.

recorded first data in 2017 and 2016 respectively. CMS–
TOTEM moreover observed double lepton production in
high-luminosity proton-tagged events [34], demonstrat-
ing initial state reconstruction is feasible.

Photon collisions at the LHC reach su�cient rates to
probe rare processes such as SM light-by-light scatter-
ing [35, 36], anomalous gauge couplings [37, 38], and
axion-like particles [39, 40]. Nonetheless, it is widely
considered that photon fusion production of sleptons
is not competitive as a discovery window compared to
electroweak production [11–14]; existing photon collider
studies therefore focus on slepton mass measurement for
specific benchmark points [41–45]. Our proposal argues
the contrary that photon collisions play an essential role
in SUSY and DM searches. We emulate AFP/CT-PPS
proton tagging, which enables powerful background sup-
pression. We demonstrate a strategy that surpasses LEP
sensitivity in the favored 15 . �m(˜̀, �̃0

1) . 60 GeV cor-
ridor, underscoring the importance of initial state kine-
matics and pmiss for the LHC discovery program.

II. PHOTON COLLIDER SIMULATION

Electromagnetic fields surrounding ultrarelativistic
protons can be modeled as a beam of nearly on-shell pho-
tons, which is known as the equivalent photon approxi-
mation [46]. We consider pair production of electrically
charged particles X via photon fusion �� ! XX. An-
alytic expressions of their QED cross-sections ���!XX
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Figure 1: Anomalous �Z production via photon fusion with intact protons in the final state.

The operators of Eq. (2.1) induce an anomalous Z ! ��� decay [29], with a partial width that
in our notation reads

�NP(Z ! ���) =
m9

Z(2⇣
2 + 2⇣̃2 � ⇣⇣̃)

8640⇡3
. (2.2)

An anomalous �� ! �Z reaction is also induced, which is the focus of this work. We find the
unpolarized differential cross section to be 1

d�NP
��!�Z

d⌦
=

�

16⇡2s

h
(3⇣2 + 3⇣̃2 � 2⇣⇣̃)(st+ tu+ us)2 � 4(⇣2 + ⇣̃2 � ⇣⇣̃)2m2

Zstu
i
, (2.3)

where s, t, and u are the usual Mandelstam variables and � = 1�m2
Z/s for the �Z final state.

As the EFT is nonrenormalizable, a breakdown of unitarity is expected at high energies. Using
the well-known partial wave analysis [30] we can estimate for what values of ⇣, ⇣̃ and s the theory
remains unitary. By imposing unitarity on the S-wave of the EFT amplitudes and neglecting the
Z boson mass one finds the conditions (see [4] for details on similar amplitudes)

|⇣ + ⇣̃|s2 < 4⇡ , |⇣ � ⇣̃|s2 <
12⇡

5
. (2.4)

As most of the recorded �Z events have
p
s below 1 TeV, we expect the EFT to remain unitary for

couplings up to
⇣, ⇣̃ < (10�12

� 10�11) GeV�4 . (2.5)

The sensitivities we will derive in Sec. 7 are much lower than these unitarity bounds. However, as a
caveat, we stress that unless the underlying New Physics model is very strongly coupled, the EFT
typically breaks down before unitarity is violated.

3 Contributions from New Physics

Loops of heavy particles charged under SU(2)L ⇥ U(1)Y contribute to the ���Z couplings. These
loop contributions only depend on the mass and quantum numbers of the particle in the loop and
can thus be given in full generality. Denoting hypercharge by Y , sine and cosine of the Weinberg
angle by sw and cw and labeling the SU(2)L representation by its dimension d, we can write [4]

⇣
⇣, ⇣̃

⌘
=

⇣
cs, c̃s

⌘ ↵2
em

swcw m4
d

✓
c2w

3d4 � 10d2 + 7

240
+ (c2w � s2w)

(d2 � 1)Y 2

4
� s2wY

4

◆
, (3.1)

1
It has been noted in [29] that the operators O± = O

�Z
± Õ

�Z
do not interfere. This property provides

a cross check of our result Eq. (2.3), as in this basis we get ⇣± = ⇣ ± ⇣̃, (3⇣2 + 3⇣̃2 � 2⇣⇣̃) = ⇣2+ + 2⇣2� and

4(⇣2 + ⇣̃2 � ⇣⇣̃) = ⇣2+ + 3⇣2� , hence a vanishing interference.

3

PI Production: Relevance @ LHC 

 3

• Exclusive/semi-exclusive production: colour singlet photon naturally leads 
to events with intact protons/rapidity gaps in final state.

20

Lepton pair production

• ATLAS (arXiv:1506.07098) have measured exclusive   and    pair 
production      use                    to compare to this.

e µ

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: Phys. Lett. B. CERN-PH-EP-2015-134
18th August 2015

Measurement of exclusive �� ! `+`� production in proton–proton
collisions at

p
s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter reports a measurement of the exclusive �� ! `+`� (` = e, µ) cross-section in
proton–proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment
at the LHC, based on an integrated luminosity of 4.6 fb�1. For the electron or muon pairs
satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to
extract the fiducial cross-sections. The cross-section in the electron channel is determined to
be�excl.

��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb for a phase-space region with invariant
mass of the electron pairs greater than 24 GeV, in which both electrons have transverse
momentum pT > 12 GeV and pseudorapidity |⌘| < 2.4. For muon pairs with invariant mass
greater than 20 GeV, muon transverse momentum pT > 10 GeV and pseudorapidity |⌘| <
2.4, the cross-section is determined to be�excl.

��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb.
When proton absorptive e↵ects due to the finite size of the proton are taken into account in
the theory calculation, the measured cross-sections are found to be consistent with the theory
prediction.

c� 2015 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.
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Table 3: Definition of the electron and muon channel fiducial regions for which the exclusive cross-sections are
evaluated.

Variable Electron channel Muon channel
p`T > 12 GeV > 10 GeV
|⌘` | < 2.4 < 2.4
m`+`� > 24 GeV > 20 GeV

the standard dipole form-factors and the improved model parameterisation including pQCD corrections
from Ref. [60]. The latter includes a fit uncertainty and the prediction furthest away from the dipole
form-factors is chosen.

Similarly, for the µ+µ� channel,

Rexcl.
��!µ+µ� = 0.791 ± 0.041 (stat.) ± 0.026 (syst.) ± 0.013 (theor.) ,

�EPA
��!µ+µ� = 0.794 ± 0.013 (theor.) pb .

The resulting fiducial cross-section for the electron channel is measured to be

�excl.
��!e+e� = 0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb .

This value can be compared to the theoretical prediction, including absorptive corrections to account for
the finite size of the proton [10]:

�EPA, corr.
��!e+e� = 0.398 ± 0.007 (theor.) pb .

For the muon channel, the fiducial cross-section is measured to be

�excl.
��!µ+µ� = 0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb ,

to be compared with [10]:
�EPA, corr.
��!µ+µ� = 0.638 ± 0.011 (theor.) pb .

The uncertainty of each prediction includes an additional 0.8% uncertainty related to the modelling of
proton absorptive corrections. It is evaluated by varying the e↵ective transverse size of the proton by 3%,
according to Ref. [64]. Figure 4 shows the ratios of the measured cross-sections to the EPA calculations
and to the prediction with the inclusion of absorptive corrections. The measurements are in agreement
with the predicted values corrected for proton absorptive e↵ects. The figure includes a similar CMS
cross-section measurement [18].

8 Conclusion

Using 4.6 fb�1 of data from pp collisions at a centre-of-mass energy of 7 TeV the fiducial cross-sections
for exclusive �� ! `+`� (` = e, µ) reactions have been measured with the ATLAS detector at the
LHC. Comparisons are made to the theory predictions based on EPA calculations, as included in the Her-
wig++ MC generator. The corresponding data-to-EPA signal ratios for the electron and muon channels

12

) SuperChic

4

Why bother?
• In era of high precision phenomenology at the LHC: NNLO 
calculations rapidly becoming the ‘standard’. However:

• Thus at this level of accuracy, must consider a proper account of 
EW corrections. At LHC these can be relevant for a range of 
processes (                                                         ).

↵2
S(MZ) ⇠ 0.1182 ⇠ 1

70
↵QED(MZ) ⇠

1

130

! EW and NNLO QCD corrections can be comparable in size.

W , Z, WH, ZH, WW , tt, jets...

R

• For consistent treatment of these, must 
incorporate QED in initial state: photon-
initiated production.

X Rapidity Gaps

• Clean, ~ pure QED process at LHC:

� Probe of BSM (anomalous couplings, ALPs, 
SUSY…). LHL et al., JHEP 1904 (2019) 010, EPJC 72 (2012) 1969, C. 

Baldenegro et al., JHEP 1806 (2018) 131, JHEP 1706 (2017) 
141, L. Beresford and J. Liu, arXiv:1908.05180, PRL 123 
(2019) no.14, 141801…

Photon collider search strategy for sleptons and dark matter at the LHC

Lydia Beresford1, ⇤ and Jesse Liu1, †

1Department of Physics, University of Oxford, Oxford OX1 3RH, UK

We propose a search strategy using the LHC as a photon collider to open sensitivity to scalar
lepton (slepton ˜̀) production with masses around 15 to 60 GeV above that of neutralino dark matter
�̃0
1. This region is favored by relic abundance and muon (g� 2)µ arguments. However, conventional

searches are hindered by the irreducible diboson background. We overcome this obstruction by
measuring initial state kinematics and the missing momentum four-vector in proton-tagged ultra-
peripheral collisions using forward detectors. We demonstrate sensitivity beyond LEP for slepton
masses of up to 220 GeV for 15 . �m(˜̀, �̃0

1) . 60 GeV with 100 fb�1 of 13 TeV proton collisions.
We encourage the LHC collaborations to open this forward frontier for discovering new physics.

I. INTRODUCTION

Elucidating the elementary properties of dark matter
(DM) is among the most urgent problems in fundamental
physics. The lightest neutralino �̃0

1 in supersymmetric
(SUSY) extensions of the Standard Model (SM) is one
of the most motivated DM candidates [1–3]. A favored
scenario involves scalar partners of the charged leptons
(sleptons ˜̀) being one to tens of GeV above the �̃0

1 mass.
This enables interactions that reduce the �̃0

1 cosmologi-
cal relic abundance to match the observed value [4] via a
mechanism called slepton coannihilation [5, 6]. Further-
more, partners of the muon (smuon µ̃) and neutralinos
with masses near the weak scale are a leading explana-
tion for 3 � 4� deviations between measurements of the
muon magnetic moment and SM prediction [7–10].

Remarkably, Large Hadron Collider (LHC) searches
for these key targets have no sensitivity when mass dif-
ferences are 15 . �m(˜̀, �̃0

1) . 60 GeV [11–14]. Here,
Large Electron Positron (LEP) collider limits remain the
most stringent, excluding m(˜̀) . 97 GeV [15–17]. Sen-
sitivity is hindered by an obstruction generic to all LHC
search strategies for invisible DM states and their me-
diators [18–29]: the kinematics of colliding quarks and
gluons are immeasurable. Without this initial state in-
formation, the missing momentum four-vector pmiss left
by DM can only be determined in the plane transverse
to the beam (pmiss

T ). This precludes direct DM mass re-
construction that would otherwise provide e↵ective dis-
crimination against neutrino ⌫ backgrounds.

This Letter proposes a search strategy to resolve these
longstanding problems by using the LHC as a photon col-
lider [30]. In a beam crossing, protons can undergo an
ultraperipheral collision (UPC), where photons from the
electromagnetic fields interact to produce sleptons exclu-
sively pp ! p(�� ! ˜̀̀̃ )p. The sleptons decay as ˜̀! `�̃0

1,
resulting in the very clean final state p(2` + pmiss)p of
our search: two intact protons, two leptons `, and miss-
ing momentum (Fig. 1). As the beam energy is known,
measuring the outgoing proton kinematics determines
the colliding photon momenta and thus pmiss. This ex-
perimental possibility is opened by the ATLAS Forward
Proton (AFP) [31] and CMS–TOTEM Precision Proton
Spectrometer (CT-PPS) [32, 33] forward detectors, which
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FIG. 8. Exclusive pair-production of sleptons ˜̀ via photon–photon fusion. Each slepton decays
directly to a lepton and neutralino �̃0

1.
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FIG. 8. Exclusive pair-production of W boson pairs via photon–photon fusion in the `⌫`⌫ final
state.

FIG. 1. Exclusive pair production of (left) scalar leptons ‘slep-
tons’ ˜̀ decaying to dark matter �̃0

1 and (right) SM diboson
WW background using the LHC as a photon collider.

recorded first data in 2017 and 2016 respectively. CMS–
TOTEM moreover observed double lepton production in
high-luminosity proton-tagged events [34], demonstrat-
ing initial state reconstruction is feasible.

Photon collisions at the LHC reach su�cient rates to
probe rare processes such as SM light-by-light scatter-
ing [35, 36], anomalous gauge couplings [37, 38], and
axion-like particles [39, 40]. Nonetheless, it is widely
considered that photon fusion production of sleptons
is not competitive as a discovery window compared to
electroweak production [11–14]; existing photon collider
studies therefore focus on slepton mass measurement for
specific benchmark points [41–45]. Our proposal argues
the contrary that photon collisions play an essential role
in SUSY and DM searches. We emulate AFP/CT-PPS
proton tagging, which enables powerful background sup-
pression. We demonstrate a strategy that surpasses LEP
sensitivity in the favored 15 . �m(˜̀, �̃0

1) . 60 GeV cor-
ridor, underscoring the importance of initial state kine-
matics and pmiss for the LHC discovery program.

II. PHOTON COLLIDER SIMULATION

Electromagnetic fields surrounding ultrarelativistic
protons can be modeled as a beam of nearly on-shell pho-
tons, which is known as the equivalent photon approxi-
mation [46]. We consider pair production of electrically
charged particles X via photon fusion �� ! XX. An-
alytic expressions of their QED cross-sections ���!XX
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Figure 1: Anomalous �Z production via photon fusion with intact protons in the final state.

The operators of Eq. (2.1) induce an anomalous Z ! ��� decay [29], with a partial width that
in our notation reads

�NP(Z ! ���) =
m9

Z(2⇣
2 + 2⇣̃2 � ⇣⇣̃)

8640⇡3
. (2.2)

An anomalous �� ! �Z reaction is also induced, which is the focus of this work. We find the
unpolarized differential cross section to be 1

d�NP
��!�Z

d⌦
=

�

16⇡2s

h
(3⇣2 + 3⇣̃2 � 2⇣⇣̃)(st+ tu+ us)2 � 4(⇣2 + ⇣̃2 � ⇣⇣̃)2m2

Zstu
i
, (2.3)

where s, t, and u are the usual Mandelstam variables and � = 1�m2
Z/s for the �Z final state.

As the EFT is nonrenormalizable, a breakdown of unitarity is expected at high energies. Using
the well-known partial wave analysis [30] we can estimate for what values of ⇣, ⇣̃ and s the theory
remains unitary. By imposing unitarity on the S-wave of the EFT amplitudes and neglecting the
Z boson mass one finds the conditions (see [4] for details on similar amplitudes)

|⇣ + ⇣̃|s2 < 4⇡ , |⇣ � ⇣̃|s2 <
12⇡

5
. (2.4)

As most of the recorded �Z events have
p
s below 1 TeV, we expect the EFT to remain unitary for

couplings up to
⇣, ⇣̃ < (10�12

� 10�11) GeV�4 . (2.5)

The sensitivities we will derive in Sec. 7 are much lower than these unitarity bounds. However, as a
caveat, we stress that unless the underlying New Physics model is very strongly coupled, the EFT
typically breaks down before unitarity is violated.

3 Contributions from New Physics

Loops of heavy particles charged under SU(2)L ⇥ U(1)Y contribute to the ���Z couplings. These
loop contributions only depend on the mass and quantum numbers of the particle in the loop and
can thus be given in full generality. Denoting hypercharge by Y , sine and cosine of the Weinberg
angle by sw and cw and labeling the SU(2)L representation by its dimension d, we can write [4]

⇣
⇣, ⇣̃

⌘
=

⇣
cs, c̃s

⌘ ↵2
em

swcw m4
d

✓
c2w

3d4 � 10d2 + 7

240
+ (c2w � s2w)

(d2 � 1)Y 2

4
� s2wY

4

◆
, (3.1)

1
It has been noted in [29] that the operators O± = O

�Z
± Õ

�Z
do not interfere. This property provides

a cross check of our result Eq. (2.3), as in this basis we get ⇣± = ⇣ ± ⇣̃, (3⇣2 + 3⇣̃2 � 2⇣⇣̃) = ⇣2+ + 2⇣2� and

4(⇣2 + ⇣̃2 � ⇣⇣̃) = ⇣2+ + 3⇣2� , hence a vanishing interference.

3

Backup <latexit sha1_base64="d7OV+xB/B6CWrqR4Zgtwk6UIRMw="></latexit>�
Q2,M2 ! Pythia

<latexit sha1_base64="D3LX6C/knQb/BUS85Jx2PtTRBbw="></latexit>�
Q2,M2 ! Pythia

• For semi-exclusive case can impose veto at 
particle level after passing to Pythia.
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AllowedAllowed

•But not the end of the story.



The Survival Factor

• Consider fraction of cross section 
due to three different components:
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1 Introduction

When proton–proton (pp) beams collide at the LHC, typically rare photon–photon induced (��) inter-
actions occur at perceptible rate and provide a unique opportunity to study high-energy electroweak
processes [1]. Compared to other final states, the dilepton production is a standard candle process of
the photon-induced production mechanism, thanks to its sizeable cross-section. Using pp collisions at
a centre-of-mass energy of

p
s = 7 TeV, measurements of pp(��) ! µ+µ�pp production (referred to

as exclusive �� ! µ+µ�) were performed by the ATLAS and CMS collaborations [2, 3]. The exclusive
�� ! e+e� process was also measured [3, 4]. A similar experimental signature has been used to study
the �� ! W+W� reaction [5–7].

The exclusive �� ! µ+µ� production process competes with the two-photon interactions involving
single- or double-proton dissociation due to the virtual photon exchange (Figure 1 (a–c)). The electro-
magnetic (EM) break-up of the proton typically results in a production of particles at small angles to the
beam direction, which can mimic the exclusive process. However, the proton-dissociative processes have
significantly di↵erent kinematic distributions compared to the exclusive reaction, allowing an e↵ective
separation of the di↵erent production mechanisms.

p

pp

p p

p p p

p
'X

X

+

�

�

�

�

�

�

�

X'

''

µ

µ

+

�

µ

µ

+

�

µ

µ

(a) (b) (c) (d)

Figure 1: Schematic diagrams for (a) exclusive, (b) single-proton dissociative and (c) double-proton dissociative
two-photon production of muon pairs in pp collisions. The e↵ect of additional interactions between the protons is
shown in (d).

In general, the photon-induced production of lepton pairs contributes up to a few percent to the inclusive
dilepton production at LHC energies [8–10].

In order to reproduce the data, the calculations of such photon-induced reactions, in particular exclusive
�� ! µ+µ� production, need to take into account the proton absorptive e↵ects [3]. They are mainly
related to additional gluon interactions between the protons (or proton remnants), shown in Figure 1 (d),
which take place in addition to the QED process. The size of the absorption is not expected to be the
same for exclusive and dissociative processes; it may also depend on the reaction kinematics. These
e↵ects lead to the suppression of exclusive cross-sections (typically around 10–20%) by producing extra
hadronic activity in the event besides the final-state muons. Recent phenomenological studies suggest that
the exclusive cross-sections are suppressed, with a survival factor that decreases with mass [11, 12].

In this paper, a measurement of exclusive dimuon production in pp collisions at
p

s = 13 TeV is presen-
ted for muon pairs with invariant mass 12 GeV < mµ+µ� < 70 GeV. The di↵erential cross-sections,
d�/dmµ+µ� , are determined within a fiducial acceptance region. In the region 30 GeV < mµ+µ� < 70 GeV,
the minimum transverse momentum of each muon is required to be 10 GeV. For 12 GeV < mµ+µ� <
30 GeV, the minimum muon transverse momentum is reduced to 6 GeV by taking advantage of the lower
trigger thresholds available by making additional requirements on muon-pair topology. In addition, both

2

Preliminary
Preliminary

Elastic SD DD

• Inclusive: • After veto:

• Veto imposed at particle level after passing to Pythia: prediction for different 
components of PI production!

•  Technical aside: also include here is probability of no addition proton-proton 
interactions (i.e. MPI) which would fill gap. Phenomenological model applied.

34

• Consider e.g. the exclusive process. So far we 
have (very) schematically:
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• These inputs are measured in 
lepton-hadron scattering.

• But we are interested in 
hadron-hadron scattering:     
need to account for 
additional hadron-hadron 
interactions.

• Consider fraction of cross section 
due to three different components:
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1 Introduction

When proton–proton (pp) beams collide at the LHC, typically rare photon–photon induced (��) inter-
actions occur at perceptible rate and provide a unique opportunity to study high-energy electroweak
processes [1]. Compared to other final states, the dilepton production is a standard candle process of
the photon-induced production mechanism, thanks to its sizeable cross-section. Using pp collisions at
a centre-of-mass energy of

p
s = 7 TeV, measurements of pp(��) ! µ+µ�pp production (referred to

as exclusive �� ! µ+µ�) were performed by the ATLAS and CMS collaborations [2, 3]. The exclusive
�� ! e+e� process was also measured [3, 4]. A similar experimental signature has been used to study
the �� ! W+W� reaction [5–7].

The exclusive �� ! µ+µ� production process competes with the two-photon interactions involving
single- or double-proton dissociation due to the virtual photon exchange (Figure 1 (a–c)). The electro-
magnetic (EM) break-up of the proton typically results in a production of particles at small angles to the
beam direction, which can mimic the exclusive process. However, the proton-dissociative processes have
significantly di↵erent kinematic distributions compared to the exclusive reaction, allowing an e↵ective
separation of the di↵erent production mechanisms.
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Figure 1: Schematic diagrams for (a) exclusive, (b) single-proton dissociative and (c) double-proton dissociative
two-photon production of muon pairs in pp collisions. The e↵ect of additional interactions between the protons is
shown in (d).

In general, the photon-induced production of lepton pairs contributes up to a few percent to the inclusive
dilepton production at LHC energies [8–10].

In order to reproduce the data, the calculations of such photon-induced reactions, in particular exclusive
�� ! µ+µ� production, need to take into account the proton absorptive e↵ects [3]. They are mainly
related to additional gluon interactions between the protons (or proton remnants), shown in Figure 1 (d),
which take place in addition to the QED process. The size of the absorption is not expected to be the
same for exclusive and dissociative processes; it may also depend on the reaction kinematics. These
e↵ects lead to the suppression of exclusive cross-sections (typically around 10–20%) by producing extra
hadronic activity in the event besides the final-state muons. Recent phenomenological studies suggest that
the exclusive cross-sections are suppressed, with a survival factor that decreases with mass [11, 12].

In this paper, a measurement of exclusive dimuon production in pp collisions at
p

s = 13 TeV is presen-
ted for muon pairs with invariant mass 12 GeV < mµ+µ� < 70 GeV. The di↵erential cross-sections,
d�/dmµ+µ� , are determined within a fiducial acceptance region. In the region 30 GeV < mµ+µ� < 70 GeV,
the minimum transverse momentum of each muon is required to be 10 GeV. For 12 GeV < mµ+µ� <
30 GeV, the minimum muon transverse momentum is reduced to 6 GeV by taking advantage of the lower
trigger thresholds available by making additional requirements on muon-pair topology. In addition, both
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• Inclusive: • After veto:

• Veto imposed at particle level after passing to Pythia: prediction for different 
components of PI production!

•  Technical aside: also include here is probability of no addition proton-proton 
interactions (i.e. MPI) which would fill gap. Phenomenological model applied.
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When proton–proton (pp) beams collide at the LHC, typically rare photon–photon induced (��) inter-
actions occur at perceptible rate and provide a unique opportunity to study high-energy electroweak
processes [1]. Compared to other final states, the dilepton production is a standard candle process of
the photon-induced production mechanism, thanks to its sizeable cross-section. Using pp collisions at
a centre-of-mass energy of

p
s = 7 TeV, measurements of pp(��) ! µ+µ�pp production (referred to

as exclusive �� ! µ+µ�) were performed by the ATLAS and CMS collaborations [2, 3]. The exclusive
�� ! e+e� process was also measured [3, 4]. A similar experimental signature has been used to study
the �� ! W+W� reaction [5–7].

The exclusive �� ! µ+µ� production process competes with the two-photon interactions involving
single- or double-proton dissociation due to the virtual photon exchange (Figure 1 (a–c)). The electro-
magnetic (EM) break-up of the proton typically results in a production of particles at small angles to the
beam direction, which can mimic the exclusive process. However, the proton-dissociative processes have
significantly di↵erent kinematic distributions compared to the exclusive reaction, allowing an e↵ective
separation of the di↵erent production mechanisms.
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Figure 1: Schematic diagrams for (a) exclusive, (b) single-proton dissociative and (c) double-proton dissociative
two-photon production of muon pairs in pp collisions. The e↵ect of additional interactions between the protons is
shown in (d).

In general, the photon-induced production of lepton pairs contributes up to a few percent to the inclusive
dilepton production at LHC energies [8–10].

In order to reproduce the data, the calculations of such photon-induced reactions, in particular exclusive
�� ! µ+µ� production, need to take into account the proton absorptive e↵ects [3]. They are mainly
related to additional gluon interactions between the protons (or proton remnants), shown in Figure 1 (d),
which take place in addition to the QED process. The size of the absorption is not expected to be the
same for exclusive and dissociative processes; it may also depend on the reaction kinematics. These
e↵ects lead to the suppression of exclusive cross-sections (typically around 10–20%) by producing extra
hadronic activity in the event besides the final-state muons. Recent phenomenological studies suggest that
the exclusive cross-sections are suppressed, with a survival factor that decreases with mass [11, 12].

In this paper, a measurement of exclusive dimuon production in pp collisions at
p

s = 13 TeV is presen-
ted for muon pairs with invariant mass 12 GeV < mµ+µ� < 70 GeV. The di↵erential cross-sections,
d�/dmµ+µ� , are determined within a fiducial acceptance region. In the region 30 GeV < mµ+µ� < 70 GeV,
the minimum transverse momentum of each muon is required to be 10 GeV. For 12 GeV < mµ+µ� <
30 GeV, the minimum muon transverse momentum is reduced to 6 GeV by taking advantage of the lower
trigger thresholds available by making additional requirements on muon-pair topology. In addition, both
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• ‘Survival factor’ = probability of no additional inelastic hadron-hadron 
interactions. Schematically:

<latexit sha1_base64="1fF6BTovQXum9DuYX68kNgFzeJU="></latexit>
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el.(x2, Q
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• How to model this? Depends on e.g.         in soft regime      requires 
understanding of proton + strong interaction in non-perturbative regime.
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Figure 4: The t dependence of the elastic proton-proton (proton-antiproton) cross sections in the

Spp̄S, Tevatron and the LHC colliders energy range. The parameters of model were tuned as

described in sect.4. The data are taken from [21]. The poor description of the data at the larger

values of �t can be improved by using a more detailed G-W parameterization, but this is not relevant

to our study.

3.2 High-mass di↵ractive dissociation

To obtain the cross section of di↵ractive dissociation we have to consider the case where in the

rapidity interval from y1 to Y we have elastic scattering (upper part of the diagram in Fig.1)

while below y1 there is an inelastic process (in Fig.1 it is shown by the lower central Pomeron).

Besides this we have to include the gap survival factor, exp(�⌦ij/2) for the amplitude, to be

sure that there are no additional inelastic interactions which may fill the gap.

The corresponding cross section takes the form

⇠d�SD

d⇠
=

d�SD

dy1
=

Z
d2b1

X

j

|aj|2
�Gj(b1, y1)

�0
d2b2

·
 
X

i

|ai|2(1�
p

1�Gi(b2, y2))e
�⌦ij(b1+b2,Y )/2Senh

i (b2, y1)

!

10

V. A. Khoze, A. D. Martin & M. G. 
Ryskin, arXiv:2012.07967

9

• Build phenomenological models, 
and tune to wealth of data on elastic 
+ inelastic proton scattering at LHC 
(and elsewhere). But in general 
source of uncertainty.

• However much less true in PI case 
(more later).



• A MC event generator for CEP 
processes. Common platform for:

‣ QCD-induced CEP.

‣ Photoproduction.

‣ Photon-photon induced CEP.

• For pp, pA and AA collisions.  Weighted/unweighted events (LHE, 
HEPMC) available- can interface to Pythia/HERWIG etc as required.

SuperChic 4 - MC Implementation

https://superchic.hepforge.org

• Full treatment of proton 
dissociation for photon-
initiated production in pp 
collisions currently available 
for lepton pair production.
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What does the data say? 
• Many BSM/SM scenarios to explore. First step: consider simplest 

‘standard candle’ of lepton pair production.

1 Introduction

When proton–proton (pp) beams collide at the LHC, typically rare photon–photon induced (��) inter-
actions occur at perceptible rate and provide a unique opportunity to study high-energy electroweak
processes [1]. Compared to other final states, the dilepton production is a standard candle process of
the photon-induced production mechanism, thanks to its sizeable cross-section. Using pp collisions at
a centre-of-mass energy of

p
s = 7 TeV, measurements of pp(��) ! µ+µ�pp production (referred to

as exclusive �� ! µ+µ�) were performed by the ATLAS and CMS collaborations [2, 3]. The exclusive
�� ! e+e� process was also measured [3, 4]. A similar experimental signature has been used to study
the �� ! W+W� reaction [5–7].

The exclusive �� ! µ+µ� production process competes with the two-photon interactions involving
single- or double-proton dissociation due to the virtual photon exchange (Figure 1 (a–c)). The electro-
magnetic (EM) break-up of the proton typically results in a production of particles at small angles to the
beam direction, which can mimic the exclusive process. However, the proton-dissociative processes have
significantly di↵erent kinematic distributions compared to the exclusive reaction, allowing an e↵ective
separation of the di↵erent production mechanisms.
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Figure 1: Schematic diagrams for (a) exclusive, (b) single-proton dissociative and (c) double-proton dissociative
two-photon production of muon pairs in pp collisions. The e↵ect of additional interactions between the protons is
shown in (d).

In general, the photon-induced production of lepton pairs contributes up to a few percent to the inclusive
dilepton production at LHC energies [8–10].

In order to reproduce the data, the calculations of such photon-induced reactions, in particular exclusive
�� ! µ+µ� production, need to take into account the proton absorptive e↵ects [3]. They are mainly
related to additional gluon interactions between the protons (or proton remnants), shown in Figure 1 (d),
which take place in addition to the QED process. The size of the absorption is not expected to be the
same for exclusive and dissociative processes; it may also depend on the reaction kinematics. These
e↵ects lead to the suppression of exclusive cross-sections (typically around 10–20%) by producing extra
hadronic activity in the event besides the final-state muons. Recent phenomenological studies suggest that
the exclusive cross-sections are suppressed, with a survival factor that decreases with mass [11, 12].

In this paper, a measurement of exclusive dimuon production in pp collisions at
p

s = 13 TeV is presen-
ted for muon pairs with invariant mass 12 GeV < mµ+µ� < 70 GeV. The di↵erential cross-sections,
d�/dmµ+µ� , are determined within a fiducial acceptance region. In the region 30 GeV < mµ+µ� < 70 GeV,
the minimum transverse momentum of each muon is required to be 10 GeV. For 12 GeV < mµ+µ� <
30 GeV, the minimum muon transverse momentum is reduced to 6 GeV by taking advantage of the lower
trigger thresholds available by making additional requirements on muon-pair topology. In addition, both

2

Uncorrelated Correlated
mµ+µ� Ni

excl. Ci d�/dmµ+µ� �stat. �syst. �
trig.
stat. �reco.

stat. �
trig.
syst. �reco.

syst. �sc./res. �veto �PU �bkg. �shapes �lumi.

[GeV] [pb/GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]
12–17 1290± 60 0.333±0.007 0.243 ± 0.013 3.4 4.3 0.3 0.1 0.9 0.9 -0.4 -1.2 -0.5 0.8 3.0 2.1
17–22 1040± 50 0.398±0.008 0.164 ± 0.010 3.7 4.5 0.3 0.1 0.9 1.0 -0.4 -1.2 -0.5 0.8 3.3 2.1
22–30 830± 40 0.428±0.009 0.076 ± 0.005 3.9 4.6 0.2 0.1 0.9 1.0 -0.2 -1.2 -0.5 0.6 3.5 2.1
30–70 690± 40 0.416±0.008 0.013 ± 0.001 4.9 4.9 0.3 0.1 1.0 1.1 -0.3 -1.2 -0.5 0.4 4.0 2.1
12–70 3850±160 0.387±0.008 0.054 ± 0.003 2.1 4.5 0.3 0.1 0.9 1.0 -0.3 -1.2 -0.5 0.8 3.3 2.1

Table 3: The measured exclusive �� ! µ+µ� di↵erential fiducial cross-sections, d�/dmµ+µ� . The extracted number
of signal events (Ni

excl.) and correction factors (Ci) are also shown. The measurements are listed together with
the statistical (�stat.), and total systematic (�syst.) uncertainties. In addition, the contributions from the individual
correlated and uncorrelated systematic error sources are provided. The last row lists d�/dmµ+µ� in the total fiducial
region. The uncertainties in Ni

excl. correspond to the combined statistical and systematic uncertainties. These are
correlated across mµ+µ� bins.
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Figure 5: (a) The exclusive �� ! µ+µ� di↵erential fiducial cross-section measurements as a function of dimuon
invariant mass mµ+µ� . (b) Comparison of the ratios of measured and predicted cross-sections to the bare EPA
calculations as a function of the average dimuon invariant mass scaled to the pp centre-of-mass energy used.
Data (markers) are compared to various predictions (lines). Full circle markers represent the four mass points
presented in this paper, while open circle, up-triangle and down-triangle depict the previous results obtained with
mµ+µ� > 11.5 GeV [2], mµ+µ� > 20 GeV [3] and mµ+µ� > 45 GeV [7] requirements on the dimuon invariant mass.
The inner error bars represent the statistical uncertainties, and the outer bars represent the total uncertainty in each
measurement. The yellow bands represent the theoretical uncertainty in the predictions. The bottom panel in (a)
shows the ratio of the predictions to the data.

since at mid-rapidity (yµ+µ� ⇡ 0) one has x1 ⇡ x2.

Figure 5 (b) shows the evolution of the survival factor as a function of the average dimuon invariant mass
scaled by a given pp centre-of-mass energy. Exclusive two-photon production of muon pairs in pp col-
lisions at the LHC has been studied by the CMS experiment at

p
s = 7 TeV for mµ+µ� > 11.5 GeV [2].

The ATLAS experiment measured exclusive production of muons at
p

s = 7 TeV in the region mµ+µ� >
20 GeV [3]. Recently the production of exclusive �� ! µ+µ� at

p
s = 8 TeV was also studied by

ATLAS in the context of exclusive �� ! W+W� measurement [7]. The probed invariant mass region
in this case is mµ+µ� > 45 GeV. The hmµ+µ�i for di↵erent measurements is calculated using the Her-
wig generator and corresponding fiducial region definitions. The deviations from unity of the ratios of
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ATLAS, M. Aaboud et al., Phys. Lett. B777, 303 (2018) 

• Multiple measurements of lepton pair production by ATLAS/CMS, 
selected via rapidity veto and/or single proton tag.

• Broad agreement, but SC predictions overshoot by O(10%) - 2-3 sigma.

Theory

1 Introduction

When proton–proton (pp) beams collide at the LHC, typically rare photon–photon induced (��) inter-
actions occur at perceptible rate and provide a unique opportunity to study high-energy electroweak
processes [1]. Compared to other final states, the dilepton production is a standard candle process of
the photon-induced production mechanism, thanks to its sizeable cross-section. Using pp collisions at
a centre-of-mass energy of

p
s = 7 TeV, measurements of pp(��) ! µ+µ�pp production (referred to

as exclusive �� ! µ+µ�) were performed by the ATLAS and CMS collaborations [2, 3]. The exclusive
�� ! e+e� process was also measured [3, 4]. A similar experimental signature has been used to study
the �� ! W+W� reaction [5–7].

The exclusive �� ! µ+µ� production process competes with the two-photon interactions involving
single- or double-proton dissociation due to the virtual photon exchange (Figure 1 (a–c)). The electro-
magnetic (EM) break-up of the proton typically results in a production of particles at small angles to the
beam direction, which can mimic the exclusive process. However, the proton-dissociative processes have
significantly di↵erent kinematic distributions compared to the exclusive reaction, allowing an e↵ective
separation of the di↵erent production mechanisms.
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Figure 1: Schematic diagrams for (a) exclusive, (b) single-proton dissociative and (c) double-proton dissociative
two-photon production of muon pairs in pp collisions. The e↵ect of additional interactions between the protons is
shown in (d).

In general, the photon-induced production of lepton pairs contributes up to a few percent to the inclusive
dilepton production at LHC energies [8–10].

In order to reproduce the data, the calculations of such photon-induced reactions, in particular exclusive
�� ! µ+µ� production, need to take into account the proton absorptive e↵ects [3]. They are mainly
related to additional gluon interactions between the protons (or proton remnants), shown in Figure 1 (d),
which take place in addition to the QED process. The size of the absorption is not expected to be the
same for exclusive and dissociative processes; it may also depend on the reaction kinematics. These
e↵ects lead to the suppression of exclusive cross-sections (typically around 10–20%) by producing extra
hadronic activity in the event besides the final-state muons. Recent phenomenological studies suggest that
the exclusive cross-sections are suppressed, with a survival factor that decreases with mass [11, 12].

In this paper, a measurement of exclusive dimuon production in pp collisions at
p

s = 13 TeV is presen-
ted for muon pairs with invariant mass 12 GeV < mµ+µ� < 70 GeV. The di↵erential cross-sections,
d�/dmµ+µ� , are determined within a fiducial acceptance region. In the region 30 GeV < mµ+µ� < 70 GeV,
the minimum transverse momentum of each muon is required to be 10 GeV. For 12 GeV < mµ+µ� <
30 GeV, the minimum muon transverse momentum is reduced to 6 GeV by taking advantage of the lower
trigger thresholds available by making additional requirements on muon-pair topology. In addition, both
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Data

Table 1: Fiducial cross sections from the combined ������ and ����� predictions with (surv = 1 and (surv estimated
using Refs. [33, 34] as described in the main text. ��������� 4 [97] predictions include fully kinematically dependent
(surv. Uncertainties of 7% (17%) are assigned for predictions of the exclusive (single-dissociative) processes [98].
The bottom row displays the measured cross sections with statistical and systematic uncertainties combined.

f������+����� ⇥ (surv f
fid.
44+? (fb) f

fid.
``+? (fb)

(surv = 1 15.5 ± 1.2 13.5 ± 1.1
(surv using Refs. [33, 34] 10.9 ± 0.8 9.4 ± 0.7

��������� 4 [97] 12.2 ± 0.9 10.4 ± 0.7

Measurement 11.0 ± 2.9 7.2 ± 1.8

be 0.92 ± 0.02 for sides � and ⇠. The near-station e�ciency is estimated using a tag-and-probe method by
first selecting events with exactly one track in the far (tag) station in the acceptance common to both stations,
�12 < GAFP < �5 mm. The e�ciency is the fraction of these events that also have one or more tracks in
the near (probe) station satisfying |Gnear � Gfar | < 2 mm. The tag and probe stations are inverted to measure
the far-station e�ciency. It is found that ntrack varies with bAFP by 2%, which is assigned as an additional
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Figure 1: Diagrams for the (a) leading-order PbPb(WW) ! `
+
`
� (PbPb) and (b) next-to-leading-order PbPb(WW) !

`
+
`
� + W(PbPb) (middle) Breit–Wheeler process in Pb+Pb collisions, and (c) the dissociative PbPb(WW¢) !

`
+
`
� + - (Pb¢Pb) process where one photon is emitted from the substructure of one of the nucleons, leading to

nucleon fragmentation in the far-forward direction.

example of which is shown in Figure 1(b), where the muons are accompanied by additional resolved soft
photons in the final state. Dissociative processes, where one photon is emitted by charged constituents of
a nucleon, as shown in Figure 1(c), are also neglected by most models, in part due to the fact that these
processes are not coherently enhanced.

The study of exclusive dimuon cross sections, conditional on observations of forward neutron production
in the direction of one or both incoming nuclei, provides an additional experimental handle on the impact
parameter range sampled in the observed events [12, 18–20]. In any particular collision, soft photons
emitted by one lead nucleus (Pb) can excite the other (Pb¢), typically through the giant dipole resonance
(GDR) [21], and induce the emission of one or more neutrons, each of which carry, on average, the full
per-nucleon beam energy. Since the probability of these excitations, as well as the overall hardness of the
photon spectrum, is correlated with the nucleus–nucleus impact parameter 1 [12], events with neutron
excitation are typically correlated with harder photon collisions. In STARlight, dilepton cross sections
associated with forward neutron production are calculated by convolving di�erential cross sections for
low-energy photonuclear neutron production with the expected photon fluxes, thus in principle providing
an essentially parameter-free prediction. Of course, the contribution from nucleonic dissociative processes
must be subtracted before comparisons with data.

Exclusive dimuon cross sections are usually presented as a function of the following quantities of the
dimuon final state:

• The dimuon invariant mass <``, which is equivalent to, , the center-of-mass energy of the colliding
WW system.

• The dimuon pair rapidity H``, which is the rapidity of the four-vector sum of the two muons.
Conservation of longitudinal momentum implies that H`` is equal to the rapidity of the WW system.

• The cosine of the dimuon scattering angle o
¢ in the WW center-of-mass frame, | cos o¢

``
|. This is

calculated from the rapidities of the two muons, H+ and H�, as tanh [(H+ � H�)/2].

• The acoplanarity U = 1 � |�q`` |/c which reflects, in part, the initial dimuon ?T,``.

While these are all final-state observables, the fact that the final state consists of only the two muons allows
the initial photon energies (:1 and :2) to be determined from the final-state muons. This is described in
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ATLAS data [24] Pure EPA bi? > RA bi? > RA, inc. S2 inc. S2 inc. S2 + FSR
� [µb] 34.1 ± 0.8 52.2 37.1 29.9 38.9 37.3

Table 1: Comparison of predictions for exclusive dimuon production in ultraperipheral PbPb collisions, with the

ATLAS data [24] at
p
sNN = 5.02 TeV. The muons are required to have pµ? > 4 GeV, |⌘µ| < 2.4, mµµ > 10 GeV,

pµµ? < 2 GeV. The data uncertainties correspond to the sum in quadrature of the statistical and systematic.

from the leptons the prediction drops further to 30.8 µb; given such FSR e↵ects are certainly
present this is therefore the more appropriate number for comparison.

We recall from the discussion above, that STARlight imposes precisely the bi? > RA cut
described in Section 2.2. It is therefore interesting to investigate the impact of this cut on
the predicted cross section. In Table 1 we show results for this, as given by SuperChic 4 [1],
suitably modified to include the bi? > RA cut when required. Excluding survival e↵ects, we
can see that the impact of this cut is rather significant, reducing the cross section by ⇠ 30%.
A further reduction of a little over ⇠ 10% is then introduced by including the physical e↵ect
of the survival factor. The final result of 29.9 µb is a little lower than, but comparable to, the
STARlight prediction of 32.1 µb. We note that we do not expect the results to coincide precisely,
as e.g. our treatment of survival e↵ects is more complete. In particular, as discussed above we
fully account for the impact parameter dependence of the �� ! µ+µ� amplitude, which is not
included in [39]. Nonetheless, we can see that the agreement is significantly improved once the
bi? > RA cut is imposed in the SuperChic results.

If we exclude this cut, then the survival factor reduces the cross section by ⇠ 25%, and the
resulting cross section is 38.9 µb, i.e. is as expected higher. Thus, we can indeed confirm the
fact that it is only by including this unphysical cut that consistency with STARlight is found.
Now, our baseline prediction of 38.9 µb lies above the data, though we should bear in mind that
the impact of QED FSR is found in the analysis to reduce the STARlight prediction by ⇠ 4%,
and so will be expected to reduce our prediction to ⇠ 37.3 µb; this is given in the last column
of Table 1 for comparison. This is still in rather poor agreement with the data, lying above it,
though the STARlight predictions undershoot the data by a similar amount.

We now consider the impact on the di↵erential predictions. It was in particular observed
in [24] that the STARlight predictions tend to undershoot the data as the dimuon rapidity, |yµµ|,
is increased. Given the discussion above, it is interesting to examine whether the imposition
of the bi? > RA cut, as well as modifying the total cross section, might modify the resulting
rapidity distribution in such a way as to explain this discrepancy. We therefore plot in Fig. 2
(top left) the ratio of the normalized distribution using our default (‘full’) prediction to that
found by imposing the bi? > RA cut. We consider the normalized case in order to isolate the
impact on the shape alone. We can clearly see that the e↵ect is rather large, with the cut leading
to a decrease in the normalized distribution at higher rapidities by ⇠ 15%. Crucially, we can see
from Fig. 6 of [24] that the shape and magnitude of the trend closely follows that observed when
plotting the ratio of the data to the STARlight prediction. That is, this is undershooting the
data by precisely the level we would expect from Fig. 2 (top left), given that the bi? > RA cut
is being imposed. Removing this artificial cut will therefore clearly lead to a better description
of the rapidity distribution.

In [24] a related e↵ect is also seen with respect to the minimum and maximum photon
energies, defined via the minimum/maximum value of k1,2 =

p
sx1,2/2, where x1,2 are the

photon momentum fractions. Here, the STARlight predictions are observed to undershoot the
data at both lower and higher values of kmin and kmax. In Fig. 2 (top right) we plot the same
ratio of normalized distributions as before, but now with respect to these variables. Remarkably,
comparing with Fig. 10 of [24] we can see that precisely this trend is reproduced by our results,
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*In fact data includes ion dissociation, but unitary wrt elastic theory

•  Recent ATLAS data on elastic* muon pair 
production in PbPb collisions provides 
another testing ground.

• Again SC predictions overshooting by O(10%), 4 sigma!

• What is going on?
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Theory vs. Data?
• This issue discussed in detail in recent paper: arXiv:2104.13392.

• Discrepancy seen in case of elastic production: will consider only this.

• First question: appears that other approaches describe data better/differently

LHL, V.A Khoze, M.G. Ryskin,  SciPost 
Phys. 11 (2021) 064, arXiv:2104.13392 

Uncorrelated Correlated
mµ+µ� Ni

excl. Ci d�/dmµ+µ� �stat. �syst. �
trig.
stat. �reco.

stat. �
trig.
syst. �reco.

syst. �sc./res. �veto �PU �bkg. �shapes �lumi.

[GeV] [pb/GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]
12–17 1290± 60 0.333±0.007 0.243 ± 0.013 3.4 4.3 0.3 0.1 0.9 0.9 -0.4 -1.2 -0.5 0.8 3.0 2.1
17–22 1040± 50 0.398±0.008 0.164 ± 0.010 3.7 4.5 0.3 0.1 0.9 1.0 -0.4 -1.2 -0.5 0.8 3.3 2.1
22–30 830± 40 0.428±0.009 0.076 ± 0.005 3.9 4.6 0.2 0.1 0.9 1.0 -0.2 -1.2 -0.5 0.6 3.5 2.1
30–70 690± 40 0.416±0.008 0.013 ± 0.001 4.9 4.9 0.3 0.1 1.0 1.1 -0.3 -1.2 -0.5 0.4 4.0 2.1
12–70 3850±160 0.387±0.008 0.054 ± 0.003 2.1 4.5 0.3 0.1 0.9 1.0 -0.3 -1.2 -0.5 0.8 3.3 2.1

Table 3: The measured exclusive �� ! µ+µ� di↵erential fiducial cross-sections, d�/dmµ+µ� . The extracted number
of signal events (Ni

excl.) and correction factors (Ci) are also shown. The measurements are listed together with
the statistical (�stat.), and total systematic (�syst.) uncertainties. In addition, the contributions from the individual
correlated and uncorrelated systematic error sources are provided. The last row lists d�/dmµ+µ� in the total fiducial
region. The uncertainties in Ni

excl. correspond to the combined statistical and systematic uncertainties. These are
correlated across mµ+µ� bins.
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Figure 5: (a) The exclusive �� ! µ+µ� di↵erential fiducial cross-section measurements as a function of dimuon
invariant mass mµ+µ� . (b) Comparison of the ratios of measured and predicted cross-sections to the bare EPA
calculations as a function of the average dimuon invariant mass scaled to the pp centre-of-mass energy used.
Data (markers) are compared to various predictions (lines). Full circle markers represent the four mass points
presented in this paper, while open circle, up-triangle and down-triangle depict the previous results obtained with
mµ+µ� > 11.5 GeV [2], mµ+µ� > 20 GeV [3] and mµ+µ� > 45 GeV [7] requirements on the dimuon invariant mass.
The inner error bars represent the statistical uncertainties, and the outer bars represent the total uncertainty in each
measurement. The yellow bands represent the theoretical uncertainty in the predictions. The bottom panel in (a)
shows the ratio of the predictions to the data.

since at mid-rapidity (yµ+µ� ⇡ 0) one has x1 ⇡ x2.

Figure 5 (b) shows the evolution of the survival factor as a function of the average dimuon invariant mass
scaled by a given pp centre-of-mass energy. Exclusive two-photon production of muon pairs in pp col-
lisions at the LHC has been studied by the CMS experiment at

p
s = 7 TeV for mµ+µ� > 11.5 GeV [2].

The ATLAS experiment measured exclusive production of muons at
p

s = 7 TeV in the region mµ+µ� >
20 GeV [3]. Recently the production of exclusive �� ! µ+µ� at

p
s = 8 TeV was also studied by

ATLAS in the context of exclusive �� ! W+W� measurement [7]. The probed invariant mass region
in this case is mµ+µ� > 45 GeV. The hmµ+µ�i for di↵erent measurements is calculated using the Her-
wig generator and corresponding fiducial region definitions. The deviations from unity of the ratios of
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comparing with Fig. 10 of [24] we can see that precisely this trend is reproduced by our results,

8
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Figure 1: Comparison of q2?N (x, q?)
2 with and without the cut bi? > RA imposed, as described in the text.

The proton (lead) case is shown in the left (right) plots, and representative values of x = 10�3 (10�5) are taken,
corresponding to the production of ⇠ 10 GeV system at central rapidity for

p
s = 13 TeV (

p
sNN = 5.02 TeV).

that in our calculation we give a more complete treatment of the opacity, which accounts for the
matter distribution within the hadrons as well as the QCD interaction probability and range.
Nonetheless, to first approximation this therefore corresponds to simply limiting the bi? integral
in (14) so that |~b1?+~b2?| > 2RA. In addition to this, in various places in the literature a further
cut is placed on the individual impact parameters

b1,2? > RA , (16)

between the hadrons and the produced system X. See e.g. [5,27] in the context of pp collisions,
and in particular the STARlight MC generator [28]. The motivation for this cut is that the final
state itself may otherwise interact with the hadron, spoiling the exclusivity of the event. While
potentially relevant for the production of strongly interacting states, this is certainly not the
case for lepton pairs, see [1, 29–31] for discussion. In particular, such a cut e↵ectively assumes
the lepton pair can interact strongly with the hadrons, which is certainly not true. In principle
additional QED exchanges between the lepton pair and the ions can play a role, but the impact
of this higher order QED e↵ect should not be accounted for according to the above procedure,
as in particular this is a higher order QED e↵ect that will not be localised in the b1,2? < RA

region, given the long range nature of QED, and nor would it be expected to lead to inelastic
production with unity probability in this region, as such a cut implies. We discuss this further
in Section 4.2, but the impact of such higher order corrections is expected to be small.

To assess the impact of this cut, we can simply remove the corresponding bi? < RA region
from the hadron form factor, in impact parameter space. In more detail, we define

Fµ(xi, qi?) = qµi?Ni(xi, qi?) , (17)

where we explicitly include the q? and x arguments for clarity. We will in particular focus purely
on the dominant ⇠ FE component of the cross section, as this is su�cient to demonstrate the
impact of such a cut. In this way we have

T (q1?, q2?) = Fµ(x1, q1?)F
⌫(x2, q2?)Vµ⌫ , (18)

as in (10), and the cross section follows as before. We then define

F̃µ(xi, bi?) = bµi?Ñi(xi, bi?) , (19)

as the Fourier conjugate of (17), i.e. so that

Ñi(xi, bi?) =
1

|~bi? |2
1

(2⇡)2

Z
d2qi?

~bi? · ~qi?Ni(xi, qi?) e
i~bi? ·~qi? . (20)
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Figure 1: Diagrams for the (a) leading-order PbPb(WW) ! `
+
`
� (PbPb) and (b) next-to-leading-order PbPb(WW) !

`
+
`
� + W(PbPb) (middle) Breit–Wheeler process in Pb+Pb collisions, and (c) the dissociative PbPb(WW¢) !

`
+
`
� + - (Pb¢Pb) process where one photon is emitted from the substructure of one of the nucleons, leading to

nucleon fragmentation in the far-forward direction.

example of which is shown in Figure 1(b), where the muons are accompanied by additional resolved soft
photons in the final state. Dissociative processes, where one photon is emitted by charged constituents of
a nucleon, as shown in Figure 1(c), are also neglected by most models, in part due to the fact that these
processes are not coherently enhanced.

The study of exclusive dimuon cross sections, conditional on observations of forward neutron production
in the direction of one or both incoming nuclei, provides an additional experimental handle on the impact
parameter range sampled in the observed events [12, 18–20]. In any particular collision, soft photons
emitted by one lead nucleus (Pb) can excite the other (Pb¢), typically through the giant dipole resonance
(GDR) [21], and induce the emission of one or more neutrons, each of which carry, on average, the full
per-nucleon beam energy. Since the probability of these excitations, as well as the overall hardness of the
photon spectrum, is correlated with the nucleus–nucleus impact parameter 1 [12], events with neutron
excitation are typically correlated with harder photon collisions. In STARlight, dilepton cross sections
associated with forward neutron production are calculated by convolving di�erential cross sections for
low-energy photonuclear neutron production with the expected photon fluxes, thus in principle providing
an essentially parameter-free prediction. Of course, the contribution from nucleonic dissociative processes
must be subtracted before comparisons with data.

Exclusive dimuon cross sections are usually presented as a function of the following quantities of the
dimuon final state:

• The dimuon invariant mass <``, which is equivalent to, , the center-of-mass energy of the colliding
WW system.

• The dimuon pair rapidity H``, which is the rapidity of the four-vector sum of the two muons.
Conservation of longitudinal momentum implies that H`` is equal to the rapidity of the WW system.

• The cosine of the dimuon scattering angle o
¢ in the WW center-of-mass frame, | cos o¢

``
|. This is

calculated from the rapidities of the two muons, H+ and H�, as tanh [(H+ � H�)/2].

• The acoplanarity U = 1 � |�q`` |/c which reflects, in part, the initial dimuon ?T,``.

While these are all final-state observables, the fact that the final state consists of only the two muons allows
the initial photon energies (:1 and :2) to be determined from the final-state muons. This is described in
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the hadron-hadron impact parameter:
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S2(b?) ⇡ ✓(b? � 2rA)

• However, in these calculations an additional cut on the dilepton-hadron 
impact parameter is imposed:

Figure 1: Comparison of q2?N (x, q?)
2 with and without the cut bi? > RA imposed, as described in the text.

The proton (lead) case is shown in the left (right) plots, and representative values of x = 10�3 (10�5) are taken,
corresponding to the production of ⇠ 10 GeV system at central rapidity for

p
s = 13 TeV (

p
sNN = 5.02 TeV).

that in our calculation we give a more complete treatment of the opacity, which accounts for the
matter distribution within the hadrons as well as the QCD interaction probability and range.
Nonetheless, to first approximation this therefore corresponds to simply limiting the bi? integral
in (14) so that |~b1?+~b2?| > 2RA. In addition to this, in various places in the literature a further
cut is placed on the individual impact parameters

b1,2? > RA , (16)

between the hadrons and the produced system X. See e.g. [5,27] in the context of pp collisions,
and in particular the STARlight MC generator [28]. The motivation for this cut is that the final
state itself may otherwise interact with the hadron, spoiling the exclusivity of the event. While
potentially relevant for the production of strongly interacting states, this is certainly not the
case for lepton pairs, see [1, 29–31] for discussion. In particular, such a cut e↵ectively assumes
the lepton pair can interact strongly with the hadrons, which is certainly not true. In principle
additional QED exchanges between the lepton pair and the ions can play a role, but the impact
of this higher order QED e↵ect should not be accounted for according to the above procedure,
as in particular this is a higher order QED e↵ect that will not be localised in the b1,2? < RA

region, given the long range nature of QED, and nor would it be expected to lead to inelastic
production with unity probability in this region, as such a cut implies. We discuss this further
in Section 4.2, but the impact of such higher order corrections is expected to be small.

To assess the impact of this cut, we can simply remove the corresponding bi? < RA region
from the hadron form factor, in impact parameter space. In more detail, we define

Fµ(xi, qi?) = qµi?Ni(xi, qi?) , (17)

where we explicitly include the q? and x arguments for clarity. We will in particular focus purely
on the dominant ⇠ FE component of the cross section, as this is su�cient to demonstrate the
impact of such a cut. In this way we have

T (q1?, q2?) = Fµ(x1, q1?)F
⌫(x2, q2?)Vµ⌫ , (18)

as in (10), and the cross section follows as before. We then define

F̃µ(xi, bi?) = bµi?Ñi(xi, bi?) , (19)

as the Fourier conjugate of (17), i.e. so that

Ñi(xi, bi?) =
1

|~bi? |2
1

(2⇡)2

Z
d2qi?

~bi? · ~qi?Ni(xi, qi?) e
i~bi? ·~qi? . (20)
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• This is unphysical: no lepton-hadron QCD interaction. HO QED 
interactions small and not to be included in this way.

• And we will show is disfavoured by differential ATLAS data in PbPb.
• First step: verify this leads to difference wrt SC predictions.
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Figure 1: Comparison of q2?N (x, q?)
2 with and without the cut bi? > RA imposed, as described in the text.

The proton (lead) case is shown in the left (right) plots, and representative values of x = 10�3 (10�5) are taken,
corresponding to the production of ⇠ 10 GeV system at central rapidity for

p
s = 13 TeV (

p
sNN = 5.02 TeV).

that in our calculation we give a more complete treatment of the opacity, which accounts for the
matter distribution within the hadrons as well as the QCD interaction probability and range.
Nonetheless, to first approximation this therefore corresponds to simply limiting the bi? integral
in (14) so that |~b1?+~b2?| > 2RA. In addition to this, in various places in the literature a further
cut is placed on the individual impact parameters

b1,2? > RA , (16)

between the hadrons and the produced system X. See e.g. [5,27] in the context of pp collisions,
and in particular the STARlight MC generator [28]. The motivation for this cut is that the final
state itself may otherwise interact with the hadron, spoiling the exclusivity of the event. While
potentially relevant for the production of strongly interacting states, this is certainly not the
case for lepton pairs, see [1, 29–31] for discussion. In particular, such a cut e↵ectively assumes
the lepton pair can interact strongly with the hadrons, which is certainly not true. In principle
additional QED exchanges between the lepton pair and the ions can play a role, but the impact
of this higher order QED e↵ect should not be accounted for according to the above procedure,
as in particular this is a higher order QED e↵ect that will not be localised in the b1,2? < RA

region, given the long range nature of QED, and nor would it be expected to lead to inelastic
production with unity probability in this region, as such a cut implies. We discuss this further
in Section 4.2, but the impact of such higher order corrections is expected to be small.

To assess the impact of this cut, we can simply remove the corresponding bi? < RA region
from the hadron form factor, in impact parameter space. In more detail, we define

Fµ(xi, qi?) = qµi?Ni(xi, qi?) , (17)

where we explicitly include the q? and x arguments for clarity. We will in particular focus purely
on the dominant ⇠ FE component of the cross section, as this is su�cient to demonstrate the
impact of such a cut. In this way we have

T (q1?, q2?) = Fµ(x1, q1?)F
⌫(x2, q2?)Vµ⌫ , (18)

as in (10), and the cross section follows as before. We then define

F̃µ(xi, bi?) = bµi?Ñi(xi, bi?) , (19)

as the Fourier conjugate of (17), i.e. so that

Ñi(xi, bi?) =
1

|~bi? |2
1

(2⇡)2

Z
d2qi?

~bi? · ~qi?Ni(xi, qi?) e
i~bi? ·~qi? . (20)
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Figure 1: Comparison of q2?N (x, q?)
2
with and without the cut bi? > RA imposed, as described in the text.

The proton (lead) case is shown in the left (right) plots, and representative values of x = 10
�3

(10
�5

) are taken,

corresponding to the production of ⇠ 10 GeV system at central rapidity for
p
s = 13 TeV (

p
sNN = 5.02 TeV).

that in our calculation we give a more complete treatment of the opacity, which accounts for the
matter distribution within the hadrons as well as the QCD interaction probability and range.
Nonetheless, to first approximation this therefore corresponds to simply limiting the bi? integral
in (14) so that |~b1?+~b2?| > 2RA. In addition to this, in various places in the literature a further
cut is placed on the individual impact parameters

b1,2? > RA , (16)

between the hadrons and the produced system X. See e.g. [6,28] in the context of pp collisions,
and in particular the STARlight MC generator [29]. The motivation for this cut is that the final
state itself may otherwise interact with the hadron, spoiling the exclusivity of the event. While
potentially relevant for the production of strongly interacting states, this is certainly not the
case for lepton pairs, see [1, 30–32] for discussion. In particular, such a cut e↵ectively assumes
the lepton pair can interact strongly with the hadrons, which is certainly not true. In principle
additional QED exchanges between the lepton pair and the ions can play a role, but the impact
of this higher order QED e↵ect should not be accounted for according to the above procedure,
as in particular this is a higher order QED e↵ect that will not be localised in the b1,2? < RA

region, given the long range nature of QED, and nor would it be expected to lead to inelastic
production with unity probability in this region, as such a cut implies. We discuss this further
in Section 4.2, but the impact of such higher order corrections is expected to be small.

To assess the impact of this cut, we can simply remove the corresponding bi? < RA region
from the hadron form factor, in impact parameter space. In more detail, we define

Fµ(xi, qi?) = qµi?Ni(xi, qi?) , (17)

where we explicitly include the q? and x arguments for clarity. We will in particular focus purely
on the dominant ⇠ FE component of the cross section, as this is su�cient to demonstrate the
impact of such a cut. In this way we have

T (q1?, q2?) = Fµ(x1, q1?)F
⌫(x2, q2?)Vµ⌫ , (18)

as in (10), and the cross section follows as before. We then define

F̃µ(xi, bi?) = bµi?Ñi(xi, bi?) , (19)

as the Fourier conjugate of (17), i.e. so that

Ñi(xi, bi?) =
1

|~bi? |2
1

(2⇡)2
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d2qi?

~bi? · ~qi?Ni(xi, qi?) e
i~bi? ·~qi? . (20)
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We can then define

N bi?<RA
i (xi, qi?) =

1

|~qi? |2

Z
d2bi? ~qi? ·~bi?Ñi(xi, bi?) e

�i~bi? ·~qi?✓(RA � bi?) , (21)

which in the RA ! 1 limit simply reproduces the original Ni(xi, qi?). Then, to include the
e↵ect of this cut we simply replace

Ni(xi, qi?) ! N bi?>RA
i (xi, qi?) ⌘ Ni(xi, qi?)�N bi?<RA

i (xi, qi?) . (22)

We note that in principle one could of course simply work with N bi?>RA
i (xi, qi?) directly by

imposing this condition in (21), but in that case one runs into issues with the numerical stability
of the resulting Fourier transform.

The result of imposing this cut is shown in Fig. 1, along with the default case for comparison,
with the proton (lead) cases shown in the left (right) plots. For the lead ion, here and in what
follows we take RA = 6.68 fm and d = 0.447 fm, as given in [37] for the Pb form factor. For the
evaluation of survival e↵ects, the neutron density is also required (see [26] for details), for which
we take the same Wood–Saxons distribution, but with Rn = 6.67 fm and dn = 0.55 fm, again
from [37]. For the proton case, as mentioned above we take a fit to the A1 collaboration [35]
for the proton form factor. When imposing the bi? > RA cut we take the same value for the
Pb case, while to be consistent with [28] in the proton case we take the two dimensional radius,
rp = 0.64 fm, determined in the transverse plane, as measured by H1 [38].

We can see that at su�ciently low Q2 the two results coincide, as we would expect given
this will be dominated by the higher bi? region in impact parameter space, where the cut will
have no impact. On the other hand, as Q2 increases we can see that the bi? > RA cut begins to
suppress the corresponding result. This is in particular begins to occur for Q2 ⇠ 1/R2

A, which is
⇠ 0.1 (10�3) GeV2 in the proton (lead) case, as we would expect. As Q2 increases further, we
begin to see a dip pattern emerging, due to the fact that the sign of N (bi? > RA) is changing
(for the original N in the lead case this is due to the Fourier transform (9) that determines
the form factor). The magnitude of this in particular becomes larger than the original N is
some regions of Q2, in particular in the lead case. This e↵ect is due to the modulating sign
in the Fourier transform (21) and the equivalent expression without the bi? < RA cut, which
corresponds to the full N case. This may appear at first to be counterintuitive, given we are
explicitly removing a contribution from the bi? < RA region, but the only requirement this gives
is that cross section integrated over bi?, or equivalently q? in transverse momentum space, is
reduced after we impose this cut. Explicitly integrating over the form factors, we observe that
this is indeed the case, which the first dip at Q2 ⇠ 1/R2

A providing the dominant impact, while
the following peaks occur in rather suppressed regions of phase space. We will confirm this
explicitly in the sections which follow. We note that if we instead impose a somewhat smoother
requirement than the sharp cuto↵ bi? < RA, then this peaking is somewhat reduced, though
not removed entirely.

3 Results

3.1 Ultraperipheral PbPb collisions: comparison to ATLAS data

We first consider the case of lepton pair production in ultraperipheral heavy ion collisions.
Specifically, we compare to the recent ATLAS measurement [24] of muon pair production atp
sNN = 5.02 TeV in PbPb collisions. Here, a fiducial cross section of �µµ

fid. = 34.1± 0.4 (stat.)±
0.7 (syst.)µb is reported. This is compared with the STARlight MC prediction [39] of 32.1 µb,
which is a little lower than the data, and indeed once this is interfaced to PYTHIA8 for QED FSR
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• The                     cut can straightforwardly be applied as a modification to the  
(      space) elastic hadron form factor:

Figure 1: Comparison of q2?N (x, q?)
2 with and without the cut bi? > RA imposed, as described in the text.

The proton (lead) case is shown in the left (right) plots, and representative values of x = 10�3 (10�5) are taken,
corresponding to the production of ⇠ 10 GeV system at central rapidity for

p
s = 13 TeV (

p
sNN = 5.02 TeV).

that in our calculation we give a more complete treatment of the opacity, which accounts for the
matter distribution within the hadrons as well as the QCD interaction probability and range.
Nonetheless, to first approximation this therefore corresponds to simply limiting the bi? integral
in (14) so that |~b1?+~b2?| > 2RA. In addition to this, in various places in the literature a further
cut is placed on the individual impact parameters

b1,2? > RA , (16)

between the hadrons and the produced system X. See e.g. [5,27] in the context of pp collisions,
and in particular the STARlight MC generator [28]. The motivation for this cut is that the final
state itself may otherwise interact with the hadron, spoiling the exclusivity of the event. While
potentially relevant for the production of strongly interacting states, this is certainly not the
case for lepton pairs, see [1, 29–31] for discussion. In particular, such a cut e↵ectively assumes
the lepton pair can interact strongly with the hadrons, which is certainly not true. In principle
additional QED exchanges between the lepton pair and the ions can play a role, but the impact
of this higher order QED e↵ect should not be accounted for according to the above procedure,
as in particular this is a higher order QED e↵ect that will not be localised in the b1,2? < RA

region, given the long range nature of QED, and nor would it be expected to lead to inelastic
production with unity probability in this region, as such a cut implies. We discuss this further
in Section 4.2, but the impact of such higher order corrections is expected to be small.

To assess the impact of this cut, we can simply remove the corresponding bi? < RA region
from the hadron form factor, in impact parameter space. In more detail, we define

Fµ(xi, qi?) = qµi?Ni(xi, qi?) , (17)

where we explicitly include the q? and x arguments for clarity. We will in particular focus purely
on the dominant ⇠ FE component of the cross section, as this is su�cient to demonstrate the
impact of such a cut. In this way we have

T (q1?, q2?) = Fµ(x1, q1?)F
⌫(x2, q2?)Vµ⌫ , (18)

as in (10), and the cross section follows as before. We then define

F̃µ(xi, bi?) = bµi?Ñi(xi, bi?) , (19)
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|~bi? |2
1

(2⇡)2

Z
d2qi?

~bi? · ~qi?Ni(xi, qi?) e
i~bi? ·~qi? . (20)
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• Applying this cut leads to much better agreement with SuperChic.

• STARlight :  32.1 pb.

ATLAS data [24] Pure EPA bi? > RA bi? > RA, inc. S2 inc. S2 inc. S2 + FSR
� [µb] 34.1 ± 0.8 52.2 37.1 29.9 38.9 37.3

Table 1: Comparison of predictions for exclusive dimuon production in ultraperipheral PbPb collisions, with the

ATLAS data [24] at
p
sNN = 5.02 TeV. The muons are required to have pµ? > 4 GeV, |⌘µ| < 2.4, mµµ > 10 GeV,

pµµ? < 2 GeV. The data uncertainties correspond to the sum in quadrature of the statistical and systematic.

from the leptons the prediction drops further to 30.8 µb; given such FSR e↵ects are certainly
present this is therefore the more appropriate number for comparison.

We recall from the discussion above, that STARlight imposes precisely the bi? > RA cut
described in Section 2.2. It is therefore interesting to investigate the impact of this cut on
the predicted cross section. In Table 1 we show results for this, as given by SuperChic 4 [1],
suitably modified to include the bi? > RA cut when required. Excluding survival e↵ects, we
can see that the impact of this cut is rather significant, reducing the cross section by ⇠ 30%.
A further reduction of a little over ⇠ 10% is then introduced by including the physical e↵ect
of the survival factor. The final result of 29.9 µb is a little lower than, but comparable to, the
STARlight prediction of 32.1 µb. We note that we do not expect the results to coincide precisely,
as e.g. our treatment of survival e↵ects is more complete. In particular, as discussed above we
fully account for the impact parameter dependence of the �� ! µ+µ� amplitude, which is not
included in [39]. Nonetheless, we can see that the agreement is significantly improved once the
bi? > RA cut is imposed in the SuperChic results.

If we exclude this cut, then the survival factor reduces the cross section by ⇠ 25%, and the
resulting cross section is 38.9 µb, i.e. is as expected higher. Thus, we can indeed confirm the
fact that it is only by including this unphysical cut that consistency with STARlight is found.
Now, our baseline prediction of 38.9 µb lies above the data, though we should bear in mind that
the impact of QED FSR is found in the analysis to reduce the STARlight prediction by ⇠ 4%,
and so will be expected to reduce our prediction to ⇠ 37.3 µb; this is given in the last column
of Table 1 for comparison. This is still in rather poor agreement with the data, lying above it,
though the STARlight predictions undershoot the data by a similar amount.

We now consider the impact on the di↵erential predictions. It was in particular observed
in [24] that the STARlight predictions tend to undershoot the data as the dimuon rapidity, |yµµ|,
is increased. Given the discussion above, it is interesting to examine whether the imposition
of the bi? > RA cut, as well as modifying the total cross section, might modify the resulting
rapidity distribution in such a way as to explain this discrepancy. We therefore plot in Fig. 2
(top left) the ratio of the normalized distribution using our default (‘full’) prediction to that
found by imposing the bi? > RA cut. We consider the normalized case in order to isolate the
impact on the shape alone. We can clearly see that the e↵ect is rather large, with the cut leading
to a decrease in the normalized distribution at higher rapidities by ⇠ 15%. Crucially, we can see
from Fig. 6 of [24] that the shape and magnitude of the trend closely follows that observed when
plotting the ratio of the data to the STARlight prediction. That is, this is undershooting the
data by precisely the level we would expect from Fig. 2 (top left), given that the bi? > RA cut
is being imposed. Removing this artificial cut will therefore clearly lead to a better description
of the rapidity distribution.

In [24] a related e↵ect is also seen with respect to the minimum and maximum photon
energies, defined via the minimum/maximum value of k1,2 =

p
sx1,2/2, where x1,2 are the

photon momentum fractions. Here, the STARlight predictions are observed to undershoot the
data at both lower and higher values of kmin and kmax. In Fig. 2 (top right) we plot the same
ratio of normalized distributions as before, but now with respect to these variables. Remarkably,
comparing with Fig. 10 of [24] we can see that precisely this trend is reproduced by our results,
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ATLAS data [14,16] Pure EPA inc. S2 bi? > rp bi? > rp, inc. S2

� [pb], 7 TeV 0.628 ± 0.038 0.798 0.742 0.660 0.626
� [pb], 13 TeV 3.12 ± 0.16 3.58 3.43 3.12 3.02

Table 2: Comparison of predictions for exclusive dimuon production in pp collisions, with the ATLAS data [14,16]

at
p
s = 7 and 13 TeV, within the fiducial acceptance. The data uncertainties correspond to the sum in quadrature

of the statistical and systematic.

factor is smaller for larger values, and again at larger invariant masses a sizeable suppression is
observed. This is due to the same e↵ect as that discussed above, namely that at higher masses
the cross section probes larger values of xi for both photons and hence the reaction tends to be
less peripheral.

3.2 pp collisions

We now consider exclusive PI production in pp collisions. We compare to the ATLAS data [14,16]
at 7 and 13 TeV, which are collected without tagged protons and corrected experimentally back
to a purely elastic cross section. We do not compare to the more recent ATLAS data with a
single proton tag [10], as although this in principle corresponds to a cleaner data sample, the
experimental errors are rather larger. A bi? > rp cut is imposed in the predictions of [28], which
are compared to ATLAS data in [14,16], at 7 and 13 TeV. In the 7 (13) TeV case the muon pair
invariant mass is restricted to be mµµ > 20 (12) GeV, with further cuts imposed as described in
the corresponding references. Cross section results are shown in Table 2, in the same format as
Table 1. We can see that in both cases the impact of imposing the bi? > rp cut, which reduces
the 7 (13) TeV cross section by ⇠ 17% (13%), is rather larger than the impact of the survival
factor, which reduces it by ⇠ 7% (4%). Moreover, we can see that the predicted value for the
cross sections including both the bi? > rp cut and survival e↵ects is rather close to those quoted
in [14, 16], corresponding to the predictions of [28]. For example, in the 13 TeV case a central
prediction of 3.06 pb is quoted, which is very close to our result of 3.02 pb. As in the comparison
to STARlight in the PbPb case, we do not expect our results to coincide exactly, due to the
fact that we account for the impact parameter dependence of the �� ! µ+µ� amplitude, and
indeed we take a more precise fit to the proton form factor. Nonetheless, we can see that our
results agree rather well once the bi? > rp cut is imposed in the SuperChic results.

4 What are the theoretical uncertainties?

In the previous sections, we have seen that without the artificial bi? > rp cut, our predictions
in pp collisions lie ⇠ 2 � 3� above the data, while for PbPb our result lies ⇠ 4� above the
data. Given this, it is natural to investigate possible causes for such an excess in the theoretical
calculation. These comparisons only account for experimental uncertainties, and hence as a first
step we should evaluate the corresponding theoretical uncertainties. As we will see, these are in
general expected to be very small; to emphasise this point we will consider in some cases rather
extreme variations in the model parameters that are physically disfavoured but even then lead
to rather small changes in the predicted cross sections.

4.1 pp collisions

We begin with the case of pp collisions. A first natural source of uncertainty to consider is in
the input elastic proton form factors, which as described in Section 2.1 are taken from a fit
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Figure 1: Comparison of q2?N (x, q?)
2 with and without the cut bi? > RA imposed, as described in the text.

The proton (lead) case is shown in the left (right) plots, and representative values of x = 10�3 (10�5) are taken,
corresponding to the production of ⇠ 10 GeV system at central rapidity for

p
s = 13 TeV (

p
sNN = 5.02 TeV).

that in our calculation we give a more complete treatment of the opacity, which accounts for the
matter distribution within the hadrons as well as the QCD interaction probability and range.
Nonetheless, to first approximation this therefore corresponds to simply limiting the bi? integral
in (14) so that |~b1?+~b2?| > 2RA. In addition to this, in various places in the literature a further
cut is placed on the individual impact parameters

b1,2? > RA , (16)

between the hadrons and the produced system X. See e.g. [5,27] in the context of pp collisions,
and in particular the STARlight MC generator [28]. The motivation for this cut is that the final
state itself may otherwise interact with the hadron, spoiling the exclusivity of the event. While
potentially relevant for the production of strongly interacting states, this is certainly not the
case for lepton pairs, see [1, 29–31] for discussion. In particular, such a cut e↵ectively assumes
the lepton pair can interact strongly with the hadrons, which is certainly not true. In principle
additional QED exchanges between the lepton pair and the ions can play a role, but the impact
of this higher order QED e↵ect should not be accounted for according to the above procedure,
as in particular this is a higher order QED e↵ect that will not be localised in the b1,2? < RA

region, given the long range nature of QED, and nor would it be expected to lead to inelastic
production with unity probability in this region, as such a cut implies. We discuss this further
in Section 4.2, but the impact of such higher order corrections is expected to be small.

To assess the impact of this cut, we can simply remove the corresponding bi? < RA region
from the hadron form factor, in impact parameter space. In more detail, we define

Fµ(xi, qi?) = qµi?Ni(xi, qi?) , (17)

where we explicitly include the q? and x arguments for clarity. We will in particular focus purely
on the dominant ⇠ FE component of the cross section, as this is su�cient to demonstrate the
impact of such a cut. In this way we have

T (q1?, q2?) = Fµ(x1, q1?)F
⌫(x2, q2?)Vµ⌫ , (18)

as in (10), and the cross section follows as before. We then define

F̃µ(xi, bi?) = bµi?Ñi(xi, bi?) , (19)

as the Fourier conjugate of (17), i.e. so that

Ñi(xi, bi?) =
1

|~bi? |2
1

(2⇡)2

Z
d2qi?

~bi? · ~qi?Ni(xi, qi?) e
i~bi? ·~qi? . (20)
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Figure 2: Normalized di↵erential cross sections as a function of the (top left) dimuon rapidity, (top right)
maximum photon energy (kmax) and minimum photon energy (kmin), and (bottom) dimuon invariant mass,
calculated using a modified version of SuperChic 4 [1]. The ratio of the full result to the case with the bi? > RA

cut imposed is given; in both cases the survival factor is included.

and hence once again we can expect a greatly improved description of these distributions by
removing the bi? > RA cut. This distribution in addition gives some insight into the reason why
this cut a↵ects the results di↵erentially in such a way. In particular, we can see from (3) that the
minimum value of the photon Q2

i is proportional to the momentum fraction x2i . Higher values
of kmax correspond to higher values of the corresponding photon momentum fraction, and hence
higher values of Q2

i on average. We can then see from Fig. 1 that larger Q2
i is precisely where

the impact of the bi? > RA cut is higher; in particular as the interaction is then less peripheral.
This e↵ect in addition explains the impact of the cut on higher rapidities, which are correlated
with an increased kmax. While the corresponding xi value of the other photon in this case will
be lower, and hence one would expect a reduced impact from the cut on this side, it is clear
from our results that it is the e↵ect of increasing xi that dominates.

The enhancement in the low kmin case is therefore simply because this is kinematically
correlated with larger kmax for the other photon. In particular, for yµµ = 0 we have kmin = 5
GeV, due to the lower limit on mµµ in the data, and hence indeed the region of kmin below this
is due to production away from central rapidities. The enhancement for kmin values above this
corresponds to the larger mµµ region, which are rather kinematically suppressed. Nonetheless,
again in [23] there is some hint of a corresponding excess in the ratio of data to STARlight,
albeit within very limited statistics.

A further way we can examine the e↵ect of this cut is to consider the invariant mass distri-
bution, which is shown in Fig. 2 (bottom). We can see that here the bi? > RA cut reduces the
cross section more significantly at higher masses, precisely in line with the discussion above, as
this will correspond to larger photon xi values on both sides. Interestingly, in Fig. 7 of [23]
there is no clear sign of any deviations with respect to STARlight predictions in the ATLAS
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(0=0=), activity in either the forward or backward side (X=0=), or activity on both sides (X=X=). Events
with smaller impact parameters, where the nuclei are closer together, are more likely to be accompanied by
neutron dissociation in one or both arms and to have photons with higher energies. The procedure to extract
the ZDC event class fractions is discussed in detail in Section 7.6, and is based on a simultaneous fit to the
acoplanarity distributions for all three ZDC selections, assuming that all events arise from partitioning
the original selection of signal events, along with backgrounds from dissociative processes that can be
di�erent for each forward neutron topology (X=0= and X=X=). The EM-pileup-corrected results are shown
in Figure 11, which displays 5X=0= and 5X=X=, the fraction of events with X=0= and X=X=, as functions of
<`` and |H`` |. It should be noted that the two sets of results are di�erent representations of the same data,
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Figure 1: Comparison of q2?N (x, q?)
2 with and without the cut bi? > RA imposed, as described in the text.

The proton (lead) case is shown in the left (right) plots, and representative values of x = 10�3 (10�5) are taken,
corresponding to the production of ⇠ 10 GeV system at central rapidity for

p
s = 13 TeV (

p
sNN = 5.02 TeV).

that in our calculation we give a more complete treatment of the opacity, which accounts for the
matter distribution within the hadrons as well as the QCD interaction probability and range.
Nonetheless, to first approximation this therefore corresponds to simply limiting the bi? integral
in (14) so that |~b1?+~b2?| > 2RA. In addition to this, in various places in the literature a further
cut is placed on the individual impact parameters

b1,2? > RA , (16)

between the hadrons and the produced system X. See e.g. [5,27] in the context of pp collisions,
and in particular the STARlight MC generator [28]. The motivation for this cut is that the final
state itself may otherwise interact with the hadron, spoiling the exclusivity of the event. While
potentially relevant for the production of strongly interacting states, this is certainly not the
case for lepton pairs, see [1, 29–31] for discussion. In particular, such a cut e↵ectively assumes
the lepton pair can interact strongly with the hadrons, which is certainly not true. In principle
additional QED exchanges between the lepton pair and the ions can play a role, but the impact
of this higher order QED e↵ect should not be accounted for according to the above procedure,
as in particular this is a higher order QED e↵ect that will not be localised in the b1,2? < RA

region, given the long range nature of QED, and nor would it be expected to lead to inelastic
production with unity probability in this region, as such a cut implies. We discuss this further
in Section 4.2, but the impact of such higher order corrections is expected to be small.

To assess the impact of this cut, we can simply remove the corresponding bi? < RA region
from the hadron form factor, in impact parameter space. In more detail, we define

Fµ(xi, qi?) = qµi?Ni(xi, qi?) , (17)

where we explicitly include the q? and x arguments for clarity. We will in particular focus purely
on the dominant ⇠ FE component of the cross section, as this is su�cient to demonstrate the
impact of such a cut. In this way we have

T (q1?, q2?) = Fµ(x1, q1?)F
⌫(x2, q2?)Vµ⌫ , (18)

as in (10), and the cross section follows as before. We then define

F̃µ(xi, bi?) = bµi?Ñi(xi, bi?) , (19)

as the Fourier conjugate of (17), i.e. so that

Ñi(xi, bi?) =
1

|~bi? |2
1

(2⇡)2

Z
d2qi?

~bi? · ~qi?Ni(xi, qi?) e
i~bi? ·~qi? . (20)
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Figure 1: Comparison of q2?N (x, q?)
2 with and without the cut bi? > RA imposed, as described in the text.

The proton (lead) case is shown in the left (right) plots, and representative values of x = 10�3 (10�5) are taken,
corresponding to the production of ⇠ 10 GeV system at central rapidity for

p
s = 13 TeV (

p
sNN = 5.02 TeV).

that in our calculation we give a more complete treatment of the opacity, which accounts for the
matter distribution within the hadrons as well as the QCD interaction probability and range.
Nonetheless, to first approximation this therefore corresponds to simply limiting the bi? integral
in (14) so that |~b1?+~b2?| > 2RA. In addition to this, in various places in the literature a further
cut is placed on the individual impact parameters

b1,2? > RA , (16)

between the hadrons and the produced system X. See e.g. [5,27] in the context of pp collisions,
and in particular the STARlight MC generator [28]. The motivation for this cut is that the final
state itself may otherwise interact with the hadron, spoiling the exclusivity of the event. While
potentially relevant for the production of strongly interacting states, this is certainly not the
case for lepton pairs, see [1, 29–31] for discussion. In particular, such a cut e↵ectively assumes
the lepton pair can interact strongly with the hadrons, which is certainly not true. In principle
additional QED exchanges between the lepton pair and the ions can play a role, but the impact
of this higher order QED e↵ect should not be accounted for according to the above procedure,
as in particular this is a higher order QED e↵ect that will not be localised in the b1,2? < RA

region, given the long range nature of QED, and nor would it be expected to lead to inelastic
production with unity probability in this region, as such a cut implies. We discuss this further
in Section 4.2, but the impact of such higher order corrections is expected to be small.

To assess the impact of this cut, we can simply remove the corresponding bi? < RA region
from the hadron form factor, in impact parameter space. In more detail, we define

Fµ(xi, qi?) = qµi?Ni(xi, qi?) , (17)

where we explicitly include the q? and x arguments for clarity. We will in particular focus purely
on the dominant ⇠ FE component of the cross section, as this is su�cient to demonstrate the
impact of such a cut. In this way we have

T (q1?, q2?) = Fµ(x1, q1?)F
⌫(x2, q2?)Vµ⌫ , (18)

as in (10), and the cross section follows as before. We then define

F̃µ(xi, bi?) = bµi?Ñi(xi, bi?) , (19)

as the Fourier conjugate of (17), i.e. so that

Ñi(xi, bi?) =
1

|~bi? |2
1
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~bi? · ~qi?Ni(xi, qi?) e
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Table 1: Fiducial cross sections from the combined ������ and ����� predictions with (surv = 1 and (surv estimated
using Refs. [33, 34] as described in the main text. ��������� 4 [97] predictions include fully kinematically dependent
(surv. Uncertainties of 7% (17%) are assigned for predictions of the exclusive (single-dissociative) processes [98].
The bottom row displays the measured cross sections with statistical and systematic uncertainties combined.

f������+����� ⇥ (surv f
fid.
44+? (fb) f

fid.
``+? (fb)

(surv = 1 15.5 ± 1.2 13.5 ± 1.1
(surv using Refs. [33, 34] 10.9 ± 0.8 9.4 ± 0.7

��������� 4 [97] 12.2 ± 0.9 10.4 ± 0.7

Measurement 11.0 ± 2.9 7.2 ± 1.8

be 0.92 ± 0.02 for sides � and ⇠. The near-station e�ciency is estimated using a tag-and-probe method by
first selecting events with exactly one track in the far (tag) station in the acceptance common to both stations,
�12 < GAFP < �5 mm. The e�ciency is the fraction of these events that also have one or more tracks in
the near (probe) station satisfying |Gnear � Gfar | < 2 mm. The tag and probe stations are inverted to measure
the far-station e�ciency. It is found that ntrack varies with bAFP by 2%, which is assigned as an additional
uncertainty. The proton resolution correction nsmear is found to be 0.98 ± 0.02 (0.96 ± 0.04) for the 44

(``) channel. This is evaluated as the fraction of simulated signal events passing bAFP, b✓✓ 2 [0.035, 0.08],
and |bAFP � b✓✓ | < 0.005 out of those satisfying b✓✓ 2 [0.035, 0.08]. Uncertainties in ⇠AFP are dominated
by global alignment (6%) evaluated by ±0.3 mm variations of GAFP, and beam optics (5%) evaluated by
varying the beam crossing angle by 50 `rad in the ���-� package. Uncertainties involving track and
cluster reconstruction are found to be less than 1%. The overall uncertainty in ⇠AFP is 9%.

The measured fiducial cross sections in the 44 and `` channels are ffid.
44+? = 11.0± 2.6 (stat) ± 1.2 (syst) ±

0.3 (lumi) and f
fid.
``+? = 7.2 ± 1.6 (stat) ± 0.9 (syst) ± 0.2 (lumi) fb, respectively. Table 1 compares these

with the combined ������ and ����� predictions assuming unit soft-survival factors (surv = 1. Soft-survival
e�ects are included using an <✓✓-dependent reweighting of these predictions to (surv calculated for exclusive
processes from Ref. [34]; ����� predictions are additionally scaled down by 15% to account for (surv

being lower for single-dissociative processes [33]. ��������� 4 [97] predictions include full kinematic
dependence on (surv for exclusive, single-, and double-dissociative processes. The predictions for 44 are
higher than for `` due to the looser [(4) requirement [94].

In summary, forward proton scattering in association with lepton pairs produced via photon fusion,
?? ! ?(WW ! ✓

+
✓
�)? (⇤) , is observed with a significance exceeding 5f in both the 44 + ? and ``+ ? final

states using 14.6 fb�1 of
p
B = 13 TeV ?? collisions at the LHC. These results demonstrate that the ATLAS

Forward Proton spectrometer performs well in high-luminosity data taking. Furthermore, proton tagging is
introduced for cross-section measurements of photon fusion processes at the electroweak scale.
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ATLAS data [24] Pure EPA bi? > RA bi? > RA, inc. S2 inc. S2 inc. S2 + FSR
� [µb] 34.1 ± 0.8 52.2 37.1 29.9 38.9 37.3

Table 1: Comparison of predictions for exclusive dimuon production in ultraperipheral PbPb collisions, with the

ATLAS data [24] at
p
sNN = 5.02 TeV. The muons are required to have pµ? > 4 GeV, |⌘µ| < 2.4, mµµ > 10 GeV,

pµµ? < 2 GeV. The data uncertainties correspond to the sum in quadrature of the statistical and systematic.

from the leptons the prediction drops further to 30.8 µb; given such FSR e↵ects are certainly
present this is therefore the more appropriate number for comparison.

We recall from the discussion above, that STARlight imposes precisely the bi? > RA cut
described in Section 2.2. It is therefore interesting to investigate the impact of this cut on
the predicted cross section. In Table 1 we show results for this, as given by SuperChic 4 [1],
suitably modified to include the bi? > RA cut when required. Excluding survival e↵ects, we
can see that the impact of this cut is rather significant, reducing the cross section by ⇠ 30%.
A further reduction of a little over ⇠ 10% is then introduced by including the physical e↵ect
of the survival factor. The final result of 29.9 µb is a little lower than, but comparable to, the
STARlight prediction of 32.1 µb. We note that we do not expect the results to coincide precisely,
as e.g. our treatment of survival e↵ects is more complete. In particular, as discussed above we
fully account for the impact parameter dependence of the �� ! µ+µ� amplitude, which is not
included in [39]. Nonetheless, we can see that the agreement is significantly improved once the
bi? > RA cut is imposed in the SuperChic results.

If we exclude this cut, then the survival factor reduces the cross section by ⇠ 25%, and the
resulting cross section is 38.9 µb, i.e. is as expected higher. Thus, we can indeed confirm the
fact that it is only by including this unphysical cut that consistency with STARlight is found.
Now, our baseline prediction of 38.9 µb lies above the data, though we should bear in mind that
the impact of QED FSR is found in the analysis to reduce the STARlight prediction by ⇠ 4%,
and so will be expected to reduce our prediction to ⇠ 37.3 µb; this is given in the last column
of Table 1 for comparison. This is still in rather poor agreement with the data, lying above it,
though the STARlight predictions undershoot the data by a similar amount.

We now consider the impact on the di↵erential predictions. It was in particular observed
in [24] that the STARlight predictions tend to undershoot the data as the dimuon rapidity, |yµµ|,
is increased. Given the discussion above, it is interesting to examine whether the imposition
of the bi? > RA cut, as well as modifying the total cross section, might modify the resulting
rapidity distribution in such a way as to explain this discrepancy. We therefore plot in Fig. 2
(top left) the ratio of the normalized distribution using our default (‘full’) prediction to that
found by imposing the bi? > RA cut. We consider the normalized case in order to isolate the
impact on the shape alone. We can clearly see that the e↵ect is rather large, with the cut leading
to a decrease in the normalized distribution at higher rapidities by ⇠ 15%. Crucially, we can see
from Fig. 6 of [24] that the shape and magnitude of the trend closely follows that observed when
plotting the ratio of the data to the STARlight prediction. That is, this is undershooting the
data by precisely the level we would expect from Fig. 2 (top left), given that the bi? > RA cut
is being imposed. Removing this artificial cut will therefore clearly lead to a better description
of the rapidity distribution.

In [24] a related e↵ect is also seen with respect to the minimum and maximum photon
energies, defined via the minimum/maximum value of k1,2 =

p
sx1,2/2, where x1,2 are the

photon momentum fractions. Here, the STARlight predictions are observed to undershoot the
data at both lower and higher values of kmin and kmax. In Fig. 2 (top right) we plot the same
ratio of normalized distributions as before, but now with respect to these variables. Remarkably,
comparing with Fig. 10 of [24] we can see that precisely this trend is reproduced by our results,
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ATLAS data [24] Pure EPA bi? > RA bi? > RA, inc. S2 inc. S2 inc. S2 + FSR
� [µb] 34.1 ± 0.8 52.2 37.1 29.9 38.9 37.3

Table 1: Comparison of predictions for exclusive dimuon production in ultraperipheral PbPb collisions, with the

ATLAS data [24] at
p
sNN = 5.02 TeV. The muons are required to have pµ? > 4 GeV, |⌘µ| < 2.4, mµµ > 10 GeV,

pµµ? < 2 GeV. The data uncertainties correspond to the sum in quadrature of the statistical and systematic.
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found by imposing the bi? > RA cut. We consider the normalized case in order to isolate the
impact on the shape alone. We can clearly see that the e↵ect is rather large, with the cut leading
to a decrease in the normalized distribution at higher rapidities by ⇠ 15%. Crucially, we can see
from Fig. 6 of [24] that the shape and magnitude of the trend closely follows that observed when
plotting the ratio of the data to the STARlight prediction. That is, this is undershooting the
data by precisely the level we would expect from Fig. 2 (top left), given that the bi? > RA cut
is being imposed. Removing this artificial cut will therefore clearly lead to a better description
of the rapidity distribution.

In [24] a related e↵ect is also seen with respect to the minimum and maximum photon
energies, defined via the minimum/maximum value of k1,2 =

p
sx1,2/2, where x1,2 are the

photon momentum fractions. Here, the STARlight predictions are observed to undershoot the
data at both lower and higher values of kmin and kmax. In Fig. 2 (top right) we plot the same
ratio of normalized distributions as before, but now with respect to these variables. Remarkably,
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PbPb:

: pp

• Naively obvious source of this: the survival factor could introduce a ~ 10% 
level theoretical uncertainty and explain the data/theory discrepancy.

• Is this possible?
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Figure 4: The pure EPA predictions for the ATLAS pp [13,15] and PbPb [23] data as a function of a lower cut
on the hadron–hadron impact parameter b?, considered as a ratio to the full EPA result, i.e. integrated down
to zero b?. All results apply the corresponding experimental event selection. The values of twice the proton and
lead radii are indicated.

a similar value for the survival factor to the more complete two–channel approach. However,
for our purposes we do not pursue this interpretation further, but simply treat this as a free
parameter with which to investigate the impact of modifications to the description of proton–
proton interactions on the survival factor. We can in e↵ect interpret variations of C⇤ about this
value as corresponding variations in the input value of the �tot

pp , which is known experimentally
with percent level precision. Such an interpretation is not completely direct, as in reality a
more complete modelling is required than this single–channel approach, but it allows us to get
a handle on how quite extreme variations in this parameter give rather small e↵ects on the
survival factor.

In Table 4 we show results for 7 and 13 TeV as before, but using the above simplified model
of the survival factor, and consider a very extreme range of C⇤ = 1�2. We emphasise that such
a range is certainly incompatible with existing data on hadronic interactions, e.g. the upper
(lower) end will correspond to values of �tot

pp that are far too high (low). However, even taking
this extreme range we can see that the corresponding variation in the survival factor is relatively
small, with the lower end of the predictions (corresponding to C⇤ = 2) still overshooting the
ATLAS data. This result is indicative of a straightforward geometric fact about the elastic
photon–initiated cross section, namely that even taking an artificially large inelastic proton–
proton scattering cross section, there is a sizeable fraction of the cross section that in impact
parameter space is simply outside the range of such inelastic QCD interactions.

To demonstrate this, in Fig. 4 we show the pure EPA predictions for the ATLAS pp and
PbPb data as a function of a lower cut on the hadron–hadron impact parameter b?, considered
as a ratio to the full EPA result, i.e. integrated down to zero b?. This shows the fractional
contribution to the total cross sections, prior to including survival e↵ects, coming from the region
of impact parameter space greater than a given b?, and is therefore a measure of precisely how
peripheral the interaction is. We can see that in all cases a significant fraction of the cross
section comes from the region of rather high b? � 2rp, 2RA, which we can therefore expect to
be untouched by survival e↵ects, irrespective of the particular model applied. We note that
the di↵erence between the 7 and 13 TeV pp cases is driven primarily not by the c.m.s. energy
but rather the lower p? cut in the 13 measurement, which as discussed above leads to a more
peripheral interaction; this is clearly seen in the figure. Due to the larger ion radius, the PbPb
is as expected significantly more peripheral, though the impact of survival e↵ects will of course
extend out to much larger b? for the same reason.
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• Forget about details of soft QCD modelling. 
First (pretty good) approximation:

<latexit sha1_base64="iXpnlD8f4HWwCvog7ZJfhN6ZaNM="></latexit>

S2(b?) ⇡ ✓(b? � 2rA)

i.e. if hadrons overlap, they will interact inelastically.

b⊥

p

p

• To match e.g. ATLAS PbPb data, instead need:
<latexit sha1_base64="W7/34/X6sCf25tViGHlw815adKw="></latexit>

S2(b?) ⇡ ✓(b? � 3rA)

i.e. ~ 100% inelastic interaction probability out to ~        (~ 0.8, 6.7 fm for 
p, Pb) beyond hadron edge.

<latexit sha1_base64="a0JN8kdUvgJy7zz2tNfdAizMWFo=">AAAB6nicdVDJSgNBEK1xjXGLevTSGARPoTtIllvUi8eIZoFkCD2dnqRJz0J3jxCGfIIXD4p49Yu8+Tf2JBFU9EHB470qqup5sRTaYPzhrKyurW9s5rby2zu7e/uFg8O2jhLFeItFMlJdj2ouRchbRhjJu7HiNPAk73iTq8zv3HOlRRTemWnM3YCOQuELRo2VbtXgYlAo4hLGmBCCMkKqFWxJvV4rkxoimWVRhCWag8J7fxixJOChYZJq3SM4Nm5KlRFM8lm+n2geUzahI96zNKQB1246P3WGTq0yRH6kbIUGzdXvEykNtJ4Gnu0MqBnr314m/uX1EuPX3FSEcWJ4yBaL/EQiE6HsbzQUijMjp5ZQpoS9FbExVZQZm07ehvD1KfqftMslUinhm/Ni43IZRw6O4QTOgEAVGnANTWgBgxE8wBM8O9J5dF6c10XrirOcOYIfcN4+AWlojeU=</latexit>rA

Very unphysical behaviour would be required. Hard to imagine that this 
can be the solution. Peripheral PI interaction ~ outside range of QCD!

!
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• In more detail:

ATLAS data [24] ✓(b? � 2RA) ✓(b? � 3RA)
� [µb] 34.1 ± 0.8 41.4 34.7

Table 5: Comparison of predictions for exclusive dimuon production in PbPb collisions, as in Table 1, but

considering extreme variations in the modelling of survival e↵ects, as described in the text.

4.2 PbPb collisions

We next consider the case of heavy ion collisions, again focussing on the comparison to the same
ATLAS data as before. A first natural source of uncertainty is again in the electric form factor
of the lead ion. To estimate this, we consider a rather extreme variation in the ion radius and/or
skin thickness, by ±0.1 fm for both the neutron and proton cases; we note that the experimental
values [37] of these observables are determined with significantly greater precision than this, in
particular in the proton case. Even so, this gives at most a 1 � 2% variation in the resulting
cross section. The genuine uncertainty from these inputs will therefore be significantly smaller
than that.

Next, we consider the impact of survival e↵ects. As discussed in [26], in the heavy ion case
these also depend on the modelling of inelastic proton–proton collisions, and as such we could
pursue a detailed analysis of model variations in this, as in the proton case. However we have
already observed the relative insensitivity to this for proton scattering, and the same will be
true here. Therefore, to keep the discussion simple, we just consider the same replacements (25)
and (26), but with rp ! RA. The e↵ect of this is shown in Table 5. We can see that taking
(25) gives a slightly larger cross section than our default result of 38.9 µb: this approximate
result misses the finite range of QCD interactions and in particular the non–zero extent of the
Pb ion outside RA, and hence underestimates the impact of survival e↵ects somewhat. We can
then see that in order to get good agreement with the data by modifying survival e↵ects, we
are forced to take a form like (26). Again, this roughly corresponds to the case of unit inelastic
scattering probability out to a range of RA ⇡ 6.68 fm outside the Pb edge. Needless to say, this
is physically incompatible with our knowledge of the range and strength of QCD interactions,
and hence cannot be the resolution to this discrepancy. In particular, any more realistic model
would have to give this level of suppression in order to match the data by modifying the survival
factor alone, and hence will be similarly physically ruled out. This is again a result of the
peripheral nature of the PbPb collision, as demonstrated in Fig. 4.

We note that there are other potential sources of uncertainty and/or incompleteness in our
theoretical description for heavy ion collisions. First, we note that our calculation corresponds to
the case of purely elastic emission from the lead ions, whereas the data includes ion dissociation;
indeed the fractions with and without this are determined experimentally via measurements
with ZDCs in [24]. However, such dissociation is dominantly driven by additional ion–ion photon
exchanges. These should occur independently of the lepton pair production process, see [29], and
so the total rate is simply given by the prediction for elastic production we present here. That is,
the impact of these additional ion–ion photon exchanges is unitary, preserving the overall rate,
as calculated for the case of elastic production1. In principle this is only true for the integrated
cross section, and in particular when cuts on the dimuon p? and/or acoplanarity are imposed,

1
As an aside, we note that SuperCHIC predictions are compared against data from the STAR collaboration

on lepton pair production in ultraperipheral AuAu collisions in [41]. However, such data correspond to ‘tagged’

collisions, that is where at least one neutron is required to be emitted from each colliding ion, ensuring that

both ions have undergone dissociation. This is in contrast to the ATLAS case, which does not require this, and

indeed our approach is not expected to described such tagged data completely, in particular with respect to the

lepton pair p? distribution. This point is not expressed clearly in [41], where it is even incorrectly stated that the

disagreement observed with SuperCHIC invalidates our calculation of purely exclusive production.
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ATLAS data [14,16] 1 ch. (C⇤ = 1� 2) ✓(b? � 2rp) ✓(b? � 3rp)
� [pb], 7 TeV 0.628 ± 0.038 0.748 - 0.727 0.719 0.668
� [pb], 13 TeV 3.12 ± 0.16 3.45 - 3.40 3.34 3.25

Table 4: Comparison of predictions for exclusive dimuon production in pp collisions, as in Table 2, but considering

extreme variations in the modelling of survival e↵ects, as described in the text.

Now, we recall from (15) that the survival factor can be approximated by assuming that the
hadrons will interact inelastically with unit probability provide they overlap in impact parameter,
that is taking

e�⌦(s,b?)/2 ⇡ ✓(b? � 2rp) . (25)

The impact of this can be read o↵ from Fig. 4, and is shown in Table 4, taking rp = 0.84 fm. We
can see that this already rather extreme assumption leads to a somewhat lower survival factor,
though still giving a cross section that lies above the data. As an exercise, we can then consider
taking

e�⌦(s,b?)/2 ⇡ ✓(b? � 3rp) , (26)

i.e.assuming that the inelastic scattering probability is unity if the proton edges are separated
by rp or less. With this level of highly unphysical behaviour we finally find results that are more
consistent with the data. This brings the issue into rather stark focus: the only way we can
account for the overshooting of the data here, if we are to only modify the modelling of survival
e↵ects in the elastic case, would be to take an approach that roughly corresponds to the level
of suppression given by (26), or even higher. This is certainly ruled out by basic observations
about the range and strength of proton–proton QCD interactions.

Finally, we note that the focus of this discussion has been on purely elastic production,
given the most precise ATLAS data on this [14, 16] are provided as cross sections corrected
back to a purely exclusive result. However, in general the initiating photons can be emitted
inelastically from the protons, see [1] for a detailed discussion. We may therefore ask how the
theoretical uncertainties are a↵ected in such a case. First, in terms of the proton form factors,
these can be expected to have a somewhat larger uncertainty, as these are somewhat less well
constrained than for purely elastic scattering. Nonetheless, they remain rather well constrained,
and the uncertainty associated with this is small. In terms of the survival factor, for single
proton dissociation (see [1]) the production process is also highly peripheral, due to the fact
that an elastic proton vertex is present on one side. For similar reasons to the elastic case,
we therefore expect the model dependence in the survival factor to be rather small, as again
a significant fraction of the scattering process will be outside the range of QCD interactions.
Nonetheless, the collision is in general less peripheral, and hence there may a somewhat larger
theoretical uncertainty in this case. For double dissociative production, the peripheral nature of
the interaction is lost, and here the survival factor is significantly lower and indeed more model
dependent. However, in general this is found to give a very small contribution to the ATLAS
data [14,16] prior to correcting back to the exclusive case.

Given the discussion above, it is interesting to recall that in [1] a comparison of the SuperCHIC
predictions for muon pair production di↵erential in the dimuon acoplanarity is compared to the
ATLAS 7 TeV data [14], where both the data and theory include elastic and SD production. Here
it is was found that the only statistically relevant excess in the theoretical predictions occurs in
the lowest acoplanarity bin, which is both where the elastic component is most enhanced and
where the interaction most peripheral, i.e. where the value of the survival factor is expected to
be largest, and the uncertainty associated with it smallest. It will certainly be of great interest
to compare to future more precise data to shed further light on this.
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extreme variations in the modelling of survival e↵ects, as described in the text.

Now, we recall from (15) that the survival factor can be approximated by assuming that the
hadrons will interact inelastically with unit probability provide they overlap in impact parameter,
that is taking

e�⌦(s,b?)/2 ⇡ ✓(b? � 2rp) . (25)

The impact of this can be read o↵ from Fig. 4, and is shown in Table 4, taking rp = 0.84 fm. We
can see that this already rather extreme assumption leads to a somewhat lower survival factor,
though still giving a cross section that lies above the data. As an exercise, we can then consider
taking

e�⌦(s,b?)/2 ⇡ ✓(b? � 3rp) , (26)

i.e.assuming that the inelastic scattering probability is unity if the proton edges are separated
by rp or less. With this level of highly unphysical behaviour we finally find results that are more
consistent with the data. This brings the issue into rather stark focus: the only way we can
account for the overshooting of the data here, if we are to only modify the modelling of survival
e↵ects in the elastic case, would be to take an approach that roughly corresponds to the level
of suppression given by (26), or even higher. This is certainly ruled out by basic observations
about the range and strength of proton–proton QCD interactions.

Finally, we note that the focus of this discussion has been on purely elastic production,
given the most precise ATLAS data on this [14, 16] are provided as cross sections corrected
back to a purely exclusive result. However, in general the initiating photons can be emitted
inelastically from the protons, see [1] for a detailed discussion. We may therefore ask how the
theoretical uncertainties are a↵ected in such a case. First, in terms of the proton form factors,
these can be expected to have a somewhat larger uncertainty, as these are somewhat less well
constrained than for purely elastic scattering. Nonetheless, they remain rather well constrained,
and the uncertainty associated with this is small. In terms of the survival factor, for single
proton dissociation (see [1]) the production process is also highly peripheral, due to the fact
that an elastic proton vertex is present on one side. For similar reasons to the elastic case,
we therefore expect the model dependence in the survival factor to be rather small, as again
a significant fraction of the scattering process will be outside the range of QCD interactions.
Nonetheless, the collision is in general less peripheral, and hence there may a somewhat larger
theoretical uncertainty in this case. For double dissociative production, the peripheral nature of
the interaction is lost, and here the survival factor is significantly lower and indeed more model
dependent. However, in general this is found to give a very small contribution to the ATLAS
data [14,16] prior to correcting back to the exclusive case.

Given the discussion above, it is interesting to recall that in [1] a comparison of the SuperCHIC
predictions for muon pair production di↵erential in the dimuon acoplanarity is compared to the
ATLAS 7 TeV data [14], where both the data and theory include elastic and SD production. Here
it is was found that the only statistically relevant excess in the theoretical predictions occurs in
the lowest acoplanarity bin, which is both where the elastic component is most enhanced and
where the interaction most peripheral, i.e. where the value of the survival factor is expected to
be largest, and the uncertainty associated with it smallest. It will certainly be of great interest
to compare to future more precise data to shed further light on this.
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PbPb:

pp:

• In pp case a very similar picture emerges if one takes e.g. a simplified one-
channel model:

ATLAS data [14,16] Baseline FF uncertainty Dipole FF
� [pb], 7 TeV 0.628 ± 0.038 0.742 +0.003

�0.005 0.755
� [pb], 13 TeV 3.12 ± 0.16 3.43 ±0.01 3.48

Table 3: Comparison of predictions for exclusive dimuon production in pp collisions, as in Table 2, but showing

the uncertainty in the theoretical predictions due to the proton form factors (FFs), evaluated as described in the

text. Also shown, for comparison, is the result using the dipole form factor (5). All results include the survival

factor.

due to the A1 collaboration [35]. To evaluate the uncertainty on this, we add in quadrature the
experimental uncertainty on the polarized extraction and the di↵erence between the unpolarized
and polarized cases. This gives an uncertainty on the form factors GE,M that is at the sub–
percent level in the lower Q2 region relevant to our considerations. We show in Table 3 the
impact of this on the same pp cross sections as before, and can see that they are less than 1%
and hence are under good control. As an aside, we also show results with the rather approximate
dipole form factor (5). Here the di↵erence is a little larger, though still rather small. Thus even
taking this rather approximate and extreme case (the dipole form factor is certainly disfavoured
experimentally) leads to very little di↵erence in the result. In other words, this is a negligible
source of uncertainty with respect to the measurements we consider here.

We next consider the uncertainty due the survival factor. We can see that this reduces
the predicted cross sections by ⇠ 7 (4) % in the 7 (13) TeV cases, with the di↵erence being
primarily driven by the lower dimuon invariant mass cut in the 13 TeV case. These are clearly
rather mild suppressions, which as discussed in e.g. [1,25] are driven by the peripheral nature of
photon–initiated process. In particular, the elastic proton form factors are strongly peaked at
low photon Q2, and in impact parameter space this corresponds to rather large proton–proton
impact parameters, b?.

Nonetheless, one might then wonder if a di↵erent modelling of such e↵ects could reasonably
lead to a somewhat larger suppression, and hence a better matching of the data. As a first
attempt, we could consider taking the di↵erent models described in [33], which all correspond to
two–channel eikonal models that provide an equally good description of the available hadronic
data at the time, but with rather di↵erent underlying parameters. The di↵erence between these
is in general rather large, and in this study it is shown that the predicted survival factor for
exclusive SM Higgs Boson production varies by a factor of ⇠ 3 between the di↵erent models;
for such a QCD–initiated process the reaction is significantly less peripheral and therefore the
dependence on the model of the survival factor correspondingly larger. Taking these alterna-
tive models (we take model 4 for concreteness in our baseline predictions) in the current case,
however, we find the variation is negligible, at the per mille level.

To investigate this e↵ect further, we consider some more dramatic (and certainly experimen-
tally disfavoured) variations in the modelling of the survival factor. We in particular consider a
simplified ‘one–channel’ model, as in e.g. [40]. That is, we ignore the internal structure of the
proton, and assume the proton–proton elastic scattering amplitude is given by a single Pomeron
exchange, with

App(s, k
2
?) = isC⇤�tot

pp (s) exp
�
�Bk2?/2

�
. (23)

The proton opacity ⌦pp(s, b?) appearing in (14) is given in terms of the Fourier transform of
this, i.e.

⌦pp(s, b?) =

Z
d2k? e�i~b?·~k?App(s, k

2
?) . (24)

Here taking C⇤ 6= 1 physically provides an e↵ective way of accounting for the possibility of proton
excitations (p ! N⇤) in the intermediate states. As discussed in [40], a value of C⇤ ⇠ 1.3 gives
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• Extreme variations in parameter       (can think of this as varying          ):
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extreme variations in the modelling of survival e↵ects, as described in the text.

Now, we recall from (15) that the survival factor can be approximated by assuming that the
hadrons will interact inelastically with unit probability provide they overlap in impact parameter,
that is taking
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The impact of this can be read o↵ from Fig. 4, and is shown in Table 4, taking rp = 0.84 fm. We
can see that this already rather extreme assumption leads to a somewhat lower survival factor,
though still giving a cross section that lies above the data. As an exercise, we can then consider
taking

e�⌦(s,b?)/2 ⇡ ✓(b? � 3rp) , (26)

i.e.assuming that the inelastic scattering probability is unity if the proton edges are separated
by rp or less. With this level of highly unphysical behaviour we finally find results that are more
consistent with the data. This brings the issue into rather stark focus: the only way we can
account for the overshooting of the data here, if we are to only modify the modelling of survival
e↵ects in the elastic case, would be to take an approach that roughly corresponds to the level
of suppression given by (26), or even higher. This is certainly ruled out by basic observations
about the range and strength of proton–proton QCD interactions.

Finally, we note that the focus of this discussion has been on purely elastic production,
given the most precise ATLAS data on this [14, 16] are provided as cross sections corrected
back to a purely exclusive result. However, in general the initiating photons can be emitted
inelastically from the protons, see [1] for a detailed discussion. We may therefore ask how the
theoretical uncertainties are a↵ected in such a case. First, in terms of the proton form factors,
these can be expected to have a somewhat larger uncertainty, as these are somewhat less well
constrained than for purely elastic scattering. Nonetheless, they remain rather well constrained,
and the uncertainty associated with this is small. In terms of the survival factor, for single
proton dissociation (see [1]) the production process is also highly peripheral, due to the fact
that an elastic proton vertex is present on one side. For similar reasons to the elastic case,
we therefore expect the model dependence in the survival factor to be rather small, as again
a significant fraction of the scattering process will be outside the range of QCD interactions.
Nonetheless, the collision is in general less peripheral, and hence there may a somewhat larger
theoretical uncertainty in this case. For double dissociative production, the peripheral nature of
the interaction is lost, and here the survival factor is significantly lower and indeed more model
dependent. However, in general this is found to give a very small contribution to the ATLAS
data [14,16] prior to correcting back to the exclusive case.

Given the discussion above, it is interesting to recall that in [1] a comparison of the SuperCHIC
predictions for muon pair production di↵erential in the dimuon acoplanarity is compared to the
ATLAS 7 TeV data [14], where both the data and theory include elastic and SD production. Here
it is was found that the only statistically relevant excess in the theoretical predictions occurs in
the lowest acoplanarity bin, which is both where the elastic component is most enhanced and
where the interaction most peripheral, i.e. where the value of the survival factor is expected to
be largest, and the uncertainty associated with it smallest. It will certainly be of great interest
to compare to future more precise data to shed further light on this.
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�tot

• Note the above explains why other approaches give similar cross sections: they 
model survival factor in different ways, but result insensitive to this.
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Form factor

ATLAS data [14,16] Baseline FF uncertainty Dipole FF
� [pb], 7 TeV 0.628 ± 0.038 0.742 +0.003

�0.005 0.755
� [pb], 13 TeV 3.12 ± 0.16 3.43 ±0.01 3.48

Table 3: Comparison of predictions for exclusive dimuon production in pp collisions, as in Table 2, but showing

the uncertainty in the theoretical predictions due to the proton form factors (FFs), evaluated as described in the

text. Also shown, for comparison, is the result using the dipole form factor (5). All results include the survival

factor.

due to the A1 collaboration [35]. To evaluate the uncertainty on this, we add in quadrature the
experimental uncertainty on the polarized extraction and the di↵erence between the unpolarized
and polarized cases. This gives an uncertainty on the form factors GE,M that is at the sub–
percent level in the lower Q2 region relevant to our considerations. We show in Table 3 the
impact of this on the same pp cross sections as before, and can see that they are less than 1%
and hence are under good control. As an aside, we also show results with the rather approximate
dipole form factor (5). Here the di↵erence is a little larger, though still rather small. Thus even
taking this rather approximate and extreme case (the dipole form factor is certainly disfavoured
experimentally) leads to very little di↵erence in the result. In other words, this is a negligible
source of uncertainty with respect to the measurements we consider here.

We next consider the uncertainty due the survival factor. We can see that this reduces
the predicted cross sections by ⇠ 7 (4) % in the 7 (13) TeV cases, with the di↵erence being
primarily driven by the lower dimuon invariant mass cut in the 13 TeV case. These are clearly
rather mild suppressions, which as discussed in e.g. [1,25] are driven by the peripheral nature of
photon–initiated process. In particular, the elastic proton form factors are strongly peaked at
low photon Q2, and in impact parameter space this corresponds to rather large proton–proton
impact parameters, b?.

Nonetheless, one might then wonder if a di↵erent modelling of such e↵ects could reasonably
lead to a somewhat larger suppression, and hence a better matching of the data. As a first
attempt, we could consider taking the di↵erent models described in [33], which all correspond to
two–channel eikonal models that provide an equally good description of the available hadronic
data at the time, but with rather di↵erent underlying parameters. The di↵erence between these
is in general rather large, and in this study it is shown that the predicted survival factor for
exclusive SM Higgs Boson production varies by a factor of ⇠ 3 between the di↵erent models;
for such a QCD–initiated process the reaction is significantly less peripheral and therefore the
dependence on the model of the survival factor correspondingly larger. Taking these alterna-
tive models (we take model 4 for concreteness in our baseline predictions) in the current case,
however, we find the variation is negligible, at the per mille level.

To investigate this e↵ect further, we consider some more dramatic (and certainly experimen-
tally disfavoured) variations in the modelling of the survival factor. We in particular consider a
simplified ‘one–channel’ model, as in e.g. [40]. That is, we ignore the internal structure of the
proton, and assume the proton–proton elastic scattering amplitude is given by a single Pomeron
exchange, with

App(s, k
2
?) = isC⇤�tot

pp (s) exp
�
�Bk2?/2

�
. (23)

The proton opacity ⌦pp(s, b?) appearing in (14) is given in terms of the Fourier transform of
this, i.e.

⌦pp(s, b?) =

Z
d2k? e�i~b?·~k?App(s, k

2
?) . (24)

Here taking C⇤ 6= 1 physically provides an e↵ective way of accounting for the possibility of proton
excitations (p ! N⇤) in the intermediate states. As discussed in [40], a value of C⇤ ⇠ 1.3 gives
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• Elastic proton form factor take from fit by A1 Collaboration:

A1 collab., J. C. Bernauer et al., Phys. Rev. C 
90, 015206 (2014), 1307.6227. 
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fit of the di↵erent models, we can rule out some of them;
however, this actually leaves the domain of the strict fre-
quentist view. In the Bayesian picture, a selection of
a model constitutes a prior. From the infinite function
space, we reduce our selection to those which are repre-
sentable by the model, attributing zero probability to all
the others. Additionally, the fit essentially assumes a flat
prior for the probability distribution for the parameters.

In the following the models used in this work will be
discussed. For the magnetic form factor, GM , the factor
µp has been suppressed to improve readability. All mod-
els are normalized to 1 at Q2 = 0. This will be used by
the fit to fix the global normalization.

1. Dipole

The designation “standard dipole,”

Gstandard dipole(Q
2) =

✓
1 +

Q2

0.71GeV2

◆�2

(30)

was coined by Hand et al. [73]. For a long time it was
the accepted form for the electric form factor of the pro-
ton and—scaled with µp/n— also for the magnetic form
factor of both the proton (“scaling relation”) and the
neutron, and it is today found in many text books (e.g.,
Ref. [74]). While the choice of the dipole form was orig-
inally purely phenomenological, the related exponential
fallo↵ in r-space comes about as the probability function
of a quantum mechanical particle trapped in a narrow
potential well.

In the present analysis, the scaling relation is not en-
forced. Instead di↵erent parameters for the electric and
magnetic form factor are used,

GE,M
dipole(Q

2) =

✓
1 +

Q2

aE,M

◆�2

. (31)

With only two free parameters, aE and aM , this model is
very rigid, and it will be seen that it is not able to describe
the data of this experiment, as was the case already for
earlier data (e.g., Simon et al. [60]).

2. Double dipole

A somewhat more flexible ansatz consists of the sum
of two dipoles,

GE,M
double dipole(Q

2) =aE/M
0

 
1 +

Q2

aE/M
1

!�2

+
⇣
1� aE,M

0

⌘ 
1 +

Q2

aE/M
2

!�2

.

(32)

3. Polynomials

a. Simple polynomial. A polynomial is a simple
model without theoretical idea of the nature of the form
factors except some level of continuity or smoothness.
The constant term is fixed to 1 by the normalization.
With a polynomial of the order n, the form factors are
parameterized as follows:

GE,M
polynomial,n(Q

2) = 1 +
nX

i=1

aE,M
i Q2 i. (33)

Since the form factors drop rapidly with Q2, high orders
are needed to describe them adequately over a larger Q2

range.
b. Polynomial ⇥ dipole. In order to free the poly-

nomial from the necessity to describe the gross behavior
of the form factors, the latter may be accounted for by
multiplying the polynomial by the standard dipole as fol-
lows:

GE,M
polynomial⇥dipole,n(Q

2) =

Gstandard dipole(Q
2)⇥

 
1 +

nX

i=1

aE,M
i Q2 i

!
. (34)

In principle, it would be possible to optimize also the
parameter of the dipole. It was found, however, that this
additional freedom does not improve the fits and has a
high computational cost.
c. Polynomial + dipole. A variation of the afore-

mentioned splitting-o↵ of the gross behavior of the form
factors is the sum of a polynomial and the standard
dipole instead of the product,

GE,M
polynomial+dipole,n(Q

2) =

Gstandard dipole(Q
2) +

 
nX

i=1

aE,M
i Q2 i

!
. (35)

While the multiplication parameterizes the relative de-
viation from the standard dipole, the sum parametrizes
the absolute deviation.
d. Inverse polynomial. A variation of the polyno-

mial model is the inverse polynomial ansatz as in Ref.
[3],

GE,M
inv. poly.,n(Q

2) =
1

1 +
Pn

i=1 a
E,M
i Q2 i

. (36)

4. Splines

In all other models described in this section, the be-
havior of the function in di↵erent Q2 regions is highly
correlated. Therefore, possible shortcomings in the de-
scription of the data in one Q2 region may influence neg-
atively the description in other regions. Functions that

24

0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03

0 0.05 0.1 0.15 0.2

G
E
/G

st
d
.d

ip
o
le

(a)

0.8

0.85

0.9

0.95

1

1.05

0 0.2 0.4 0.6 0.8 1

G
E
/G

st
d
.d

ip
o
le

(b)

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

0 0.2 0.4 0.6 0.8 1

G
M
/(
µ
p
G

st
d
.d

ip
o
le
)

Q2[GeV2]

(c)

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 0.2 0.4 0.6 0.8 1

µ
p
G

E
/G

M

Q2[GeV2]

(d)

[4] no TPE
[2]
Christy [56]
Simon [60]

Price [67]
Berger [87]
Hanson [88]
Janssens [57]

Borkowski [64]
Bartel [89]
Murphy [92]
Bosted [68]

[4] no TPE
[4] with TPE
[2]
Gayou [44, 45]

Milbrath [50]
Punjabi [53]
Jones [47, 48]
Ron [16]

Zhan [55]
Crawford [43]
Pospischil [90]
Dieterich [91]

FIG. 10. (Color) The form factors GE and GM , normal-
ized to the standard dipole, and GE/GM as a function of Q2.
Black line: Best fit to the new Mainz data, blue area: statis-
tical 68% pointwise confidence band, light blue area: exper-
imental systematic error, green outer band: variation of the
Coulomb correction by ±50%. The di↵erent data points de-
pict the previous measurements [2, 4, 43–45, 47, 48, 50, 53, 55–
57, 60, 67, 68, 87–91] as in Refs. [2, 4] with the data points of
Refs. [16, 64, 92] added.

Fit model Input parametrization

Std. dip. Arr.03P Arr.03R Arr.07 F.-W.

Single dipole 1.000 2.193 2.227 2.230 3.216

Double dipole 1.002 1.033 1.001 1.003 1.162

Polynomial 1.000 1.000 1.000 1.000 1.000

Poly. + dipole 1.000 1.000 1.000 1.000 1.000

Poly. ⇥ dipole 1.000 1.000 1.000 1.000 1.000

Inv. poly. 1.000 1.000 1.000 1.000 1.000

Spline 1.000 1.000 1.002 1.002 1.000

Spline ⇥ dipole 1.000 1.000 1.000 1.000 1.000

Friedrich-Walcher 1.005 1.004 1.004 1.004 1.002

TABLE VI. The average achieved �2
red of the di↵erent model

combinations. Columns: Input parametrizations. Rows:
Models used in the fit.

Fit model Input parametrization

Std. dip. Arr.03P Arr.03R Arr.07 F.-W.

811 829 868 878 860

Single Dipole 0±0.7 29±1 �6±1 �15±1 �2±1

Double Dipole 0±1 10±1 0±2 3±3 81±27

Polynomial 0±7 0±7 0±6 0±6 0±6

Poly. + dipole 0±7 �1±7 0±6 �1±6 0±6

Poly. ⇥ dipole 0±5 0±5 0±4 0±4 0±5

Inv. poly. �1±5 �1±5 0±5 �1±5 0±5

Spline �1±3 �1±3 �3±3 �5±3 0±3

Spline ⇥ dipole 0±3 1±3 �1±3 �2±3 1±3

Friedrich-Walcher 0±1 3±2 �1±2 +2±3 �1±3

TABLE VII. Bias of the di↵erent models for the charge radius
extraction and the width of the radius distribution. Positive
values correspond to an extracted radius larger than the input
radius. Values are in atm.

cept the standard dipole itself. The double-dipole model
reproduces the general shape for most models surpris-
ingly well; however, one cannot extract the radii reliably
as can be seen in the Tables VII and VIII listing the bias
of the radius extraction. All flexible models exhibit only
a small bias here except for the spline for a single input
parametrization. These tables also list the 1� width of
the distributions, i.e., these values are not the error of the
bias, but describe what kind of precision one can expect
from the model for a single experiment. In that sense,
the spline models are more e�cient than the polynomial
models.

Second, we compare the form factors determined with
our broad set of models. Figures 11 show the relative
deviation of the di↵erent models from the spline fit. The
flexible models have a very small spread between them-
selves, at least in the region where a reliable disentan-
glement of the form factors is possible. The less flexible
fits exhibit larger deviations, especially above 0.5 GeV2.

• This fit comes with precisely 
determined experimental 
uncertainties.

• Standard dipole form is 
strongly disfavoured:

• Varying in allowed uncertainties gives ~ 1% level differences.
• A very similar picture in PbPb case.
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PbPb: Other effects?

• HO QED effects? Recent paper suggests could 
act in this direction/with this size. 

• But controversial. Previous studies predict much 
smaller effect, expect to be suppressed by 

W. Zha and Z. Tang, (2021), 2103.04605. 
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FIG. 1: The Feynman diagram for the lepton pair production in the Born approximation

FIG. 2: The Feynman diargam for the Coulomb correction

and [5] that the Coulomb corrections are large while the unitarity corrections are small

(see Table II). The results of [5] were confirmed recently in [6] by a direct summation of

the Feynman diagrams.

FIG. 3: The Feynman diagram for the unitarity correction

In this paper we present our calculations related to the exclusive and inclusive muon

pair production. This process may be easier to observe experimentally than e+e− pair

production described above. It should be stressed that the calculation scheme, as well as,

the final results for the µ+µ− pair production are quite different than those for the e+e−

pair production.

In the next section we calculate the Born cross section for one µ+µ− pair production

using the improved equivalent photon approximation with an accuracy about 5 %. In

Sect. 3 we present the Coulomb and unitarity corrections to the exclusive production

3

K. Hencken, E.A. Kuraev, V. Serbo, Phys.Rev.C 75 (2007) 034903… 
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⇠ Q2/m2
µµ

• Unitary corrections? Studies suggest ~ 50% 
events accompanied by additional            pairs.

• Might these be vetoed on? Strongly peaked at 
low         so perhaps not. But requires study.
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• Ion dissociation? Not in SC (but in Starlight). Dominantly driven by 
additional ion-ion QED exchanges, i.e. unitary. Other inelastic emission 
subtracted from data.

• QED FSR? Included via Pythia in predictions, but worth recalling that 
production of such back-to-back leptons particularly sensitive to this.

Relevance of these effects clearly not limited to (SM) dimuon production!!
22



pp: Other effects?
• Most of the above points not relevant for pp case: less room for manoeuvre!

• ATLAS 7 TeV data suggests peaked at low dimuon acoplanarity.

• More differential data, including with proton tags will guide the way.

• Most natural culprit: treatment of dissociative production, though no clear 
issue to point to.
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Figure 4: Comparison of SuperChic 4 + Pythia 8.2 predictions for the dilepton acoplanarity
distribution compared to the ATLAS data [30] at

p
s = 7 TeV, within the corresponding experi-

mental fiducial region, and with a rapidity veto applied on tracks in the central region. Electron
(muon) pair production is shown in the left (right) figures. The elastic and SD contributions
are overlaid, while the DD has been subtracted from the data, and so is not included.

accurate evaluation of the true veto, though of course in a realistic analysis one would account
for the e�ciency of this. Once one imposes a p? > 0.2 GeV threshold and allows photons to lie
within a R = 0.2 radius of the leptons, we can see that the result of this and of simply vetoing on
all particles with no threshold and with no FSR photon emission are very similar. If we simply
veto on all particles above p? > 0.2 GeV then at higher Mll the reduction is larger.

3.2 Dilepton acoplanarity distribution: comparison to data

In Fig. 4 we compare the predicted acoplanarity distribution for electron (left) and muon (right)
pairs to the ATLAS data on semi–exclusive dilepton production at

p
s = 7 TeV. This is selected

by imposing a veto on additional tracks in association with the dilepton vertex, see [30] for
further details. The Drell–Yan and DD contributions are subtracted from the data, and so
we do not include these; we will comment on the latter case further below. We impose the
corresponding rapidity veto (although its impact is very small) directly on our sample of SD
events that were generated without pile-up, and apply the veto e�ciency obtained in the ATLAS
analysis evaluated on samples of elastic events including pile-up to both the elastic and SD events.
Pile–up is by far the dominant e↵ect in reducing the veto e�ciency, with values around ⇠ 74%
for both the electron and muon channels. We apply all other cuts on the dilepton system as
described in the ATLAS analysis, and in particular a cut on the dilepton pll? < 1.5 GeV, which
suppresses the SD contribution and leads to the relatively small impact of the rapidity veto in
the absence of pile–up e↵ects. We include the e↵ect of FSR photon emission from the dilepton
system.

The results in the figure are shown overlaid, such that the upper red curve corresponds to the
total (elastic + SD) prediction. We can see that the description of the electron data is excellent,
and the description of the muon data is generally good. In Fig. 5 we show the same results, but
with the predictions excluding survival e↵ects given in addition, and we can see the importance
in including these to achieve a good description of the distributions. On the other hand, in the
muon case the predictions appear to overshoot the measurement in the lowest acoplanarity bin
somewhat, where the elastic contribution is enhanced. Given the relatively limited statistics
and apparent mild inconsistency between the two samples, for which the pl? cuts are slightly

12

ATLAS, G. Aad et al., Phys. 
Lett. B 749, 242 (2015) 
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Light-by-Light Scattering
• MC prediction compared with ATLAS data on LbyL scattering:
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Figure 8: Measured di�erential fiducial cross sections of WW ! WW production in Pb+Pb collisions at
p
BNN = 5.02 TeV

for four observables (from left to right and top to bottom): diphoton invariant mass, diphoton absolute rapidity,
average photon transverse momentum and diphoton | cos(\⇤) |. The measured cross-section values are shown as
points with error bars giving the statistical uncertainty and grey bands indicating the size of the total uncertainty. The
results are compared with the prediction from the SuperChic v3.0 MC generator (solid line) with bands denoting the
theoretical uncertainty.

shape of | cos(\⇤) | distribution. The <WW di�erential fiducial distribution is measured up to <WW = 30 GeV.
For <WW > 30 GeV, no events are observed in data versus a total expectation of 0.8 events.

The cross sections for all distributions shown in this paper, including normalised di�erential fiducial cross
sections, are available in HepData [62].

8.4 Search for ALP production

Any particle coupling directly to photons could be produced in an B-channel process in photon–photon
collisions, leading to a resonance peak in the invariant mass spectrum. One popular candidate for producing
a narrow diphoton resonance is an axion-like particle (ALP) [12]. The measured diphoton invariant mass
spectrum, as shown in Figure 7, is used to search for WW ! 0 ! WW process, where 0 denotes the ALP.
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9 Conclusions

This paper presents a measurement of the light-by-light scattering process in quasi-real photon interactions
from ultra-peripheral Pb+Pb collisions at

p
BNN = 5.02 TeV by the ATLAS experiment at the LHC. The

measurement is based on the full Run 2 data set corresponding to an integrated luminosity of 2.2 nb�1.
After the selection criteria, 97 events are selected in the data while 27 ± 5 background events are expected.
The dominant background processes are estimated using data-driven methods.

After background subtraction and corrections for detector e�ects are applied, the integrated fiducial cross
section of the WW ! WW process is measured to be ffid = 120 ± 17 (stat.) ± 13 (syst.) ± 4 (lumi.) nb.
The data-to-theory ratios are 1.50 ± 0.32 and 1.54 ± 0.32 for predictions from Ref. [37] and from the
SuperChic v3.0 MC generator, respectively. Di�erential fiducial cross sections are measured as a function
of several properties of the final-state photons and are compared with Standard Model theory predictions for
light-by-light scattering. All measured cross sections are consistent within 2 standard deviations with the
predictions. The measurement precision is limited in all kinematic regions by statistical uncertainties.

The measured diphoton invariant mass distribution is used to search for axion-like particles and set new
exclusion limits on their production in the Pb+Pb (WW) ! Pb(⇤)+Pb(⇤)

WW reaction. Integrated cross
sections above 2 to 70 nb are excluded at the 95% CL, depending on the diphoton invariant mass in the
range 6–100 GeV. These results provide, to this date and within the aforementioned mass range, the most
stringent constraints in the search for ALP signals.
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• SuperChic central prediction: 78 nb, i.e. now below the data. Differentially:

• Enhancement dominantly in lower mass region. In general comparison to/
calibration w.r.t. process such as dimuon production have key role here.
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1 Introduction
Elastic light-by-light (LbL) scattering, gg ! gg, is a pure quantum mechanical process that
proceeds, at leading order in the quantum electrodynamics (QED) coupling a, via virtual box
diagrams containing charged particles (Fig. 1, left). In the standard model (SM), the box di-
agram involves contributions from charged fermions (leptons and quarks) and the W± bo-
son. Although LbL scattering via an electron loop has been indirectly tested through the high-
precision measurements of the anomalous magnetic moment of the electron [1] and muon [2],
its direct observation in the laboratory remains elusive because of a very suppressed produc-
tion cross section proportional to a4 ⇡ 3 ⇥ 10�9. Out of the two closely-related processes—
photon scattering in the Coulomb field of a nucleus (Delbrück scattering) [3] and photon split-
ting in a strong magnetic field (“vacuum birefringence”) [4, 5]—only the former has been
clearly observed [6]. However, as demonstrated in Ref. [7], the LbL process can be experi-
mentally observed in ultraperipheral interactions of ions, with impact parameters larger than
twice the radius of the nuclei, exploiting the very large fluxes of quasireal photons emitted by
the nuclei accelerated at TeV energies [8]. Ions accelerated at high energies generate strong elec-
tromagnetic fields, which, in the equivalent photon approximation [9–11], can be considered
as g beams of virtuality Q

2 < 1/R
2, where R is the effective radius of the charge distribu-

tion. For lead (Pb) nuclei with radius R ⇡ 7 fm, the quasireal photon beams have virtuali-
ties Q

2 < 10�3 GeV2, but very large longitudinal energy (up to Eg = g/R ⇡ 80 GeV, where
g is the Lorentz relativistic factor), enabling the production of massive central systems with
very soft transverse momenta (pT . 0.1 GeV). Since each photon flux scales as the square of
the ion charge Z

2, gg scattering cross sections in PbPb collisions are enhanced by a factor of
Z

4 ' 5 ⇥ 107 compared to similar proton-proton or electron-positron interactions.
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Figure 1: Schematic diagrams of light-by-light scattering (gg ! gg, left), QED dielectron
(gg ! e+e�, centre), and central exclusive diphoton (gg ! gg, right) production in ultra-
peripheral PbPb collisions. The (⇤) superscript indicates a potential electromagnetic excitation
of the outgoing ions.

Many final states have been measured in photon-photon interactions in ultraperipheral colli-
sions of proton and/or lead beams at the CERN LHC, including gg ! e+e� [12–21], gg !
W+W� [22–24], and first evidence of gg ! gg reported by the ATLAS experiment [25] with a
signal significance of 4.4 standard deviations (3.8 standard deviations expected). The final-state
signature of interest in this analysis is the exclusive production of two photons, PbPb ! gg !
Pb(⇤)ggPb(⇤), where the diphoton final state is measured in the otherwise empty central part
of the detector, and the outgoing Pb ions (with a potential electromagnetic excitation denoted
by the (⇤) superscript) survive the interaction and escape undetected at very low q angles with
respect to the beam direction (Fig. 1, left). The dominant backgrounds are the QED production
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Summary/Outlook

Thank you for listening

★ Photon-initiated production a key mode for BSM (and SM) production.

★ SuperChic 4 MC: fully differential generation of this channel, including 
complete treatment of survival factor.

★ Intriguing data/theory discrepancy in dilepton channel (pp & PbPb).

★ New study: variation between some predictions due to inconsistencies in 
some approaches and not genuine model dependence

★ Dependence on details of survival factor calculation v. small due to 
peripheral nature of PI interaction. 

★ Reason for apparent data/theory discrepancy tbd. Some possibilities 
described here, but difficult to see that survival factor is solution.

★ Much to do - stay tuned!


