CF-UM-UP

@ GE NT4 INTRODUCTORY COURSE ON
S et ' A SIMULATION TOOLKIT | G E A N T ll_

Physics Processes

Bernardo Tomeé

Slides adapted from slides produced by :
Marc Verderi,Dennis Wright, Vladimir Ivantchenko, Mihaly Novak
http://cern.ch/geant4

1.
V.

Contents

Generalities on particles and processes
The process interface

The physics categories

Physics Lists

Optical processes (afternoon)

Geant4 Physics

- Geant4 provides a wide variety of physics components
for use in simulation
= Physics components are coded as processes

- a process is a class which tells a particle what to do and

how (how to travel, interact, decay, etc ...)

- user may write his own processes (derived from the

Geant4 process abstract base class)

= Processes are grouped into

- electromagnetic, hadronic, decay, parameterized and

transportation

Geant4 Physics: Electromagnetic

= standard — complete set of (EM) processes covering
charged particles and gammas

- energy range 1 keV to ~PeV
= low energy — specialized routines for electrons,
gammas, charged hadrons

- more atomic shell structure details

- some processes valid down to below keV

- but some processes can be used only up to few GeV
= optical photon — only for long wavelength photons (x-
rays, UV, visible)

= processes for reflection/refraction, absorption,

wavelength shifting, Rayleigh scattering
- Special particle type : G40pticalPhoton

Processes for Gamma and Electron

Photon processes
Y conversion into et+e- pair
Compton scattering
Photoelectric effect
Rayleigh scattering
Gamma-nuclear inferaction in hadronic sub-package
Electron and positron processes
lonisation
Coulomb scattering
Bremsstrahlung
Positron annihilation
Production of e+e- pairs

Nuclear interaction in hadronic sub-package

Suitable for HEP & many other Geant4 applications
with electron and gamma beams

Processes for Hadrons

= Pure hadronic interactions up to TeV

- elastic
- Inelastic
" capture
- fission

- Radioactive decay

- at-rest and in-flight

= photo-nuclear interaction (~1 MeV up to 100 TeV)
= |epto-nuclear interaction (~100 MeV up to 100TeV)

- e+ and e- induced nuclear reactions
- muon induced nuclear reactions

Geant4 Physics: Decay, Parameterized and Transportation

Decay processes include
weak decay (leptonic decays, semi-leptonic decays,
radioactive decay of nuclei)

- electromagnetic decay (%, X9, etc.)
- strong decay are not included here (part of hadronic models)

Parameterized processes

- e.g. electromagnetic showers propagated according to
parameters averaged over many events

- faster than detailed shower simulation

- Transportation process

- special process responsible to propagate the particles
through the geometry

- need to be assigned to each particle

Physics Processes (1)

- All the work of particle decays and interactions is done
by processes

A process does two things:

- decides when and where an interaction will occur
+ method: GetPhysicalInteractionLength()

+ this requires a cross section or decay lifetime
- for the transportation process, the distance to the nearest volume
border along the track is used

- generates the final state of the interaction (changes
momentum, position, generates secondaries, etc.)
+ method: DoIt()
+ this requires a model of the physics

Physics Processes (2)

= There are three flavors of processes: . AlongStep
NG

PostStep

- well-located in space -> PostStep
- distributed in space -> AlongStep
- well-located in time -> AtRest

® A process may be a combination of all three of the above

- In that case six methods must be implemented
(GetPhysicallnteractionLength() and Dolt() for each action)

“Shortcut” processes are defined which invoke only one
- Discrete process (has only PostStep physics)

- Continuous process (has only AlongStep physics)

- AtRest process (has only AtRest physics)

Example Processes (1)

Discrete process: Compton Scattering
- step determined by cross section, interaction at end of step

- PostStepGPIL()
- PostStepDolt()

- Continuous process: Cherenkov effect
- photons created along step, # roughly proportional to step

length

- AlongStepGPIL()
- AlongStepDolt()

At rest process: positron annihilation at rest

- no displacement, time is the relevant variable

- AtRestGPIL()
- AtRestDolt()

These are examples of so-called “pure” processes

Example Processes (2)

e Continuous + discrete: ionization
= energy loss is continuous
- Moller/Bhabha scattering and knock-on electrons are discrete

e Continuous + discrete: bremsstrahlung

- energy loss due to soft photons is continuous
- hard photon emission is discrete

® |n both cases, the production threshold separates the
continuous and discrete parts of the process

e Multiple scattering is also continuous + discrete

Handling Multiple Processes

Many processes (and therefore many interactions) can be
assigned to the same particle
How does Geant4 decide which interaction happens at
any one time?
- interaction length or decay length is sampled from each
process
- shortest one happens, unless

- a volume boundary is encountered in less than the sampled
length --> no physics interaction occurs (just simple transport).

- the processes that were not chosen have their interaction
lengths shortened by the distance travelled in the previous
step

* repeat the procedure

From G4Track to processes

G4Track |° Propagated by the tracking,

* Snapshot of the particle state.

—>>1G4DynamicParticle

: « Th rticle type »:
—> G4ParticleDefinition . %}%%lé%terog?

= G4PionPlus...

L 2

—>| Process_1 |. ... i.ec. the processes
—>{ Process_2
>

Process_3

T—> GaProcessManager| . Holds the physics sensitivity

>

Handled b
kernel

In its “physics list’

Configured by the User

$

Physics Lists

What is a Physics List?

A class which collects all the particles, physics processes
and production thresholds needed for your application

It tells the run manager how and when to invoke physics

It is a very flexible way to build a physics environment
- user can pick the particles he wants
- user can pick the physics to assign to each particle

But, user must have a good understanding of the physics
required

- omission of particles or physics processes could cause errors or poor
simulation

Why a Physics List?

- there are many different physics models and approximations

- very much the case for hadronic physics

- but also the case for electromagnetic physics
- computation speed is an issue
- a user may want a less-detailed, but faster approximation
- no application requires all the physics and particles Geant4
has to offer

- e.g., most medical applications do not need multi-GeV physics

Why a Physics List?

e Geant4 takes an atomistic, rather than an integral approach to
physics description :

= provide many physics components (processes) which are de-
coupled from one another;
= user selects these components in custom-designed physics lists in

much the same way as a detector geometry is built;

- tailor the physics to the simulation needs;

G4VUserPhysicsList

e All physics lists must derive from this class;
and then be registered with the run manager
one of the 3 mandatory classes

class YourPhysicsList: G4VUserPhysicsList {

YourPhysicsList();

~YourPhysicsList();

void ConstructParticle();

void ConstructProcess();

void SetCuts():;

o User must implement the 2 pure virtual methods : ConstructParticle() and
ConstructProcess(); SetCuts() method is optional.

ConstructParticle()
o Interface method to define the list of particles to be used in the simulation

o Construct particles individually:

void YourPhysicsList::ConstructParticle() {
G4Electron::Definition();
G4Gamma: :Definition();
G4Proton::Definition();

G4Neutron: :Definition();

o Construct particles by using helpers:
void YourPhysicsList::ConstructParticle() {

G4BaryonConstructor baryonConstructor;
baryonConstructor.ConstructParticle();

G4BosonConstructor bosonConstructor;
bosonConstructor.ConstructParticle();

ConstructProcess|()

o Interface method to define the list of physics processes to be used in the
simulation for a given particle

void YourPhysicsList::ConstructProcess() {

AddTransportation();

ConstructEM();

ConstructGeneral();

62
63
64

'~
0J

0 00

N =&

6
7
7
7
/
/7
L
J

~ S
Oy Ol B W

o ~

~J
O

Construct Electromagnetic Physics

void YourPhysicsList::ConstructEM() {

G4PhysicsListHelperx ph
auto particlelterator

= G4PhysicsListHelper::GetPhysicsListHelper();
=G
particleIterator->reset();

etParticleIterator();

((xparticlelterator)()) {
G4ParticleDefinition* particleDef = particlelterator->value();
(particleDef == G4Gamma::Definition()) {

ph->RegisterProcess(G4GammaConversion(), particleDef);

(particleDef == G4Electron::Definition()) {

ph—>RegisterProcess(G4eBremsstrahlung(), particleDef);

) o

Construct Decay Physics

void YourPhysicsList::ConstructGeneral() {

G4PhysicsListHelperk ph = G4PhysicsListHelper::GetPhysicsListHelper();
auto particlelterator = GetParticlelterator();
particlelterator->reset();

G4Decay* theDecayProcess = G4Decay();

((kparticleIterator)()) {
G4ParticleDefinitionx particleDef = particlelterator->value();
(theDecayProcess->IsApplicable(xparticleDef)) {

ph->RegisterProcess(theDecayProcess, particleDef);

}

Modular Physics Lists

> A realistic physics list is likely to have many particles and
physics processes;

- 3Such a list can become quite long, complicated and hard to
maintain;

> Modular physics list provides a solution :

@)

the interface is defined in G4VModularPhysicsList, derived
from G4VUserPhysicslList

AddTransportation() automatically called for all registered
particles

allows to use “physics modules” :

a given physics module handles consistently a well defined category of
physics (e.g. electromagnetic physics, hadronic physics, decay, etc.)

G4VModularPhysicsList

class YourModularPhysicsList : G4VModularPhysicsList {

- -
-
V1

D J

YourModularPhysicsList();

i

= R R e
& S
S OWoONM

NN -

:_\ }_\

YourModularPhysicsList: :YourModularPhysicsList()
: G4VWodularPhysicsList() {

~ g

[Yy
Ut OTOn O n
AS

defaultCutValue = 0.7%CLHEP: :mm;

<
0
7
0
Y

|_\ :,_\)_\ [_\

OOyt n

RegisterPhysics(G4EmStandardPhysics());

N 2O O

}_\ I_\ Z_\ }_\

8

RegisterPhysics(YourProtonPhysics());

[

‘ -
oY OYOY OY O

pd ol
®)
~NOY O B

Modular Physics Lists :
Standard EM Constructors

- Some “standard” EM physics constructors
— G4EmStandardPhysics - default, used by ATLAS
— G4EmStandardPhysics_option1 - for HEP, fast but not precise for sampling
calorimeters, used by CMS
— G4EmStandardPhysics_option2 - for HEP, fast but not precise for sampling
calorimeters, used by LHCDb
— G4EmStandardPhysics_option3 - for medical and space science applications
— G4EmStandardPhysics_option4 - most accurate EM models and settings

- Many experimental, low-energy and DNA physics

— G4EmStandardPhysicsSS — used single scattering instead of multiple
- G4AEmEXxtraPhysics

— gamma, electro-nuclear, G4SynchrotronRadiation, rare EM processes
- G40pticalPhysics

Check here for a detailed description of the available EM physics constructors

or .
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/electromagnetic/index.html

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/electromagnetic/index.html
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/electromagnetic/index.html

Modular Physics Lists :
Decay Physics Constructors

- G4DecayPhysics

— main constructor for decay physics
— defines standard list of particles

— Included in all reference physics lists
- G4RadioactiveDecayPhysics

- Defines radioactive decay of isotopes

- Enable extra physics needed for radioactive decay

- Should be registered by user

A realistic physics list can be found in basic example B3 .

» amodular physics list that includes “standard” EM physics and decay
physics by using built in physics constructors;

» serves as a good starting point to construct your own physics list;
» add any other physics according to your needs

Reference Physics Lists

- Adding hadronic physics is even more involved :
— for any hadronic process, the user might chose from several “models”;

— choosing the most appropriate model for a given application requires
significant experience

* Pre-packaged physics lists:

— in order to help the users, the Geant4 toolkit provides pre-packaged
physics lists according to some reference use cases;

— these are “ready-to-use”, complete physics lists constructed by the
experts

— each pre-packaged reference physics list includes different combinations
of EM and hadronic physics;

— ~20 reference physics lists

The complete list of pre-packaged reference physics lists can be found here

or .
geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/reference_PL/

index.html

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/reference_PL/index.html
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/reference_PL/index.html
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/reference_PL/index.html

How to use a Reference Physics List (RPL)

Example of FTFP_BERT :

In your main program:
#include "FTFP BERT.hh"
int main(int argc, char** argv) {

G4VModularPhysicsList* physicsList = new FTFP BERT;
runManager->SetUserInitialization(physicsList);

}

Adding extra physics to a RPL

Adding radioactive decay :

#include "G4RadioactiveDecayPhysics.hh"

iné main(int argc, char** argv) {
éé&ModularPhysicsList* physicsList = new FTFP BERT;

physicsList->RegisterPhysics(new G4RadioactiveDecayPhysics);
runManager->SetUserInitialization(physicsList);

}

Adding optical photon physics :

#include "G40OpticalPhysics.hh"

int main(int argc, char** argv) {
G4VModularPhysicsList* physicsList = new FTFP_ BERT;

physicsList->RegisterPhysics(new G4OpticalPhysics);
runManager->SetUserInitialization(physicsList);

}

S\ID,

