### Café com Física:

Constraining dimension-six nonminimal Lorentz-violating electron-nucleon interactions with **EDM physics** 



JONAS ARAÚJO

UNIVERSIDADE DE COIMBRA, DECEMBER 2019

#### For starters, what is EDM?

- **EDM** stands for **E**lectric **D**ipole **M**oment
- We're talking about the EDM of elementary particles!



#### EDMs and discrete symmetries

- C and CP violations are fundamental ingredients to explain the matter – anti-matter asymmetry in the universe!
- The Sakharov conditions:
  - 1. Baryon number (B) violation
  - 2. Sources of C and CP violation (EDM searches fit here!)
  - 3. Interactions out of thermal equilibrium
  - C and CP violation sources in the SM are too small!
  - There must be new Physics or unknown mechanisms in the SM!



 $\Lambda \mathcal{N}$ 

# Current Status: Experiments versus SM

 $\mathcal{E}_{\rm eff} \approx 78 \, {\rm GV \, cm}^{-1}$ 

$$\omega_{
m ST}^{\ {\cal N}{\cal E}} \qquad \qquad d$$

 $\mathcal{NE}$ T

H–C ST

 $\omega_{
m ST}^{\ N}$ 

 $\omega_{\mathrm{ST}}^{\ \mathcal{NE}}$ 

 $P_{\rm ref}$ 

 $S_{P_{\rm ref}}$ 

 $heta_{
m ST}^{
m H-C}$ 

 $\delta^{\mathcal{NE}}$ 

For an electronic EDM, the SM prediction is of around

$$\sigma_{d_e} = 4.0 \times 10^{-30} e \operatorname{cm}_{|d_e^{\mathrm{MP}}|} \approx 10^{-38} e \cdot \mathrm{cm}$$

The experiments probe up until [Nature (London) 562, 355 (2018)]  $\omega^{\mathcal{NE}}$ 

 $|d_e| < 1.1 \times 10^{-29} e \text{ cm}$ 

 $\mathcal{NE}$  > Two scenarios may fit in these 9 orders of magnitude:

1. Experiments become increasingly precise and confirm the SM prediction  $\hbar\omega^{\mathcal{NE}} = -d_{e\ eff} + W_{S}C_{S}$ 

 $^{-30}e$ 

- 2. EDMs are detected above the SM prediction >>> New Physics!
- $\omega^{\,\mathcal{NEB}}$

#### Experimental detection

- Typical experiments attempt to detect EDM in atomic systems (why?)
- An electric field is applied on the atom/molecule, but a problem rises!
- ▶ The external electric field is counter-balanced by the internal field induced by polarization



The molecule's constituents feel NO ELECTRIC FIELD (in average)

No net electric field >>>> No EDM-induced energy shift

This implies EDMs are undetectable in atomic systems! This is known as the Schiff's Theorem

### Bypassing Schiff's Theorem

#### Schiff's theorem has 3 conditions of validity:

- 1. Electrostatic interactions only
- 2. Point-like particles only
- 3. Nonrelativistic systems

It turns out an EDM is detectable if any of those conditions is not satisfied

- 1. The experiments are done using **electric AND magnetic fields**!
- 2. A nuclear EDM is detectable if the nucleus is not point-like (residual Schiff Moment)
- 3. An electronic EDM is detectable (and much enhanced) in relativistic scenarios

#### Who carries the EDM in a molecule?

- ▶ In an atom, an EDM may be due to:
- 1. Intrinsic properties of the electrons or nucleons OR
- 2. The interaction between them
- ► We will focus on the possibility 2, that is, electron-nucleon (e-N) couplings

#### Electron-nucleon couplings

These couplings involve 4 spinors and have the general form

 $\left(\bar{N}\Gamma_1 N\right) \left(\bar{\psi}\Gamma_2 \psi\right)$ 

- They have mass dimension of at least 6
- Each factor in parenthesis is a Dirac bilinear

Only the ones with P- and T-odd components are viable candidates! TABLE III. Behavior of Dirac bilinears under discrete symmetry operators.

|   | $\bar{\psi}\psi$ | $\bar{\psi}i\gamma_5\psi$ | $ar{\psi}\gamma^0\psi$ | $ar{\psi} \gamma^i \psi$ | $\bar{\psi}\gamma^0\gamma_5\psi$ | $ar{\psi}\gamma^i\gamma_5\psi$ | $ar{\psi}\sigma^{0i}\psi$ | $\bar{\psi}\sigma^{ij}\psi$ |
|---|------------------|---------------------------|------------------------|--------------------------|----------------------------------|--------------------------------|---------------------------|-----------------------------|
| P | +                | _                         | +                      | _                        | _                                | +                              | _                         | +                           |
| T | +                | —                         | +                      | —                        | +                                | —                              | +                         | —                           |
| С | +                | +                         | —                      | —                        | +                                | +                              | —                         | _                           |
|   |                  |                           |                        |                          |                                  |                                |                           |                             |

#### Electron-nucleon couplings

#### In the usual scenario, the candidates are:



S-PS (scalar-pseudoscalar)
V-A (vector-axial vector)
T-PT (tensor-pesudotensor)
A-V (axial vector-vector)
PS-S (pseudoscalar-scalar).

But only the FIRST, THIRD and FIFTH contain P- and T-odd components

#### **Effective Lagrangian**

$$\mathcal{L}_{CP} = -\frac{G_F}{\sqrt{2}} \sum_j \left[ C_S \bar{N}_j N_j \bar{\psi} i \gamma^5 \psi + C_P \bar{N}_j i \gamma_5 N_j \bar{\psi} \psi - \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} C_T \bar{N}_j \sigma^{\mu\nu} N_j \bar{\psi} \sigma^{\alpha\beta} \psi \right]$$

- Now we'll outline how to read an EDM contribution from an effective 4-spinor Lagrangian
- Consider the (dominant) term

$$\mathcal{L}_{CP} = -\frac{G_F}{\sqrt{2}} \sum_j C_S \bar{N}_j N_j \bar{\psi} i \gamma_5 \psi$$

First we apply the nonrelativistic limit for the nucleons

$$\bar{N}_{j}N_{j} = \begin{pmatrix} \phi_{N}^{*} & \chi_{N}^{*} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \phi_{N} \\ \chi_{N} \end{pmatrix} \xrightarrow{\text{Remaining (electron's) Lagrangian}} \mathcal{L}_{CP-e} = -\frac{G_{F}}{\sqrt{2}}C_{S}An(\mathbf{r})\bar{\psi}i\gamma_{5}\psi$$

$$\approx |\phi_{N}|^{2} ,$$
Note the nucleons' densities added up coherently to A.n(\mathbf{r})
$$n(\mathbf{r}) = |\phi_{N}|^{2} \xrightarrow{\text{Nucleon's}} \text{probability density!}$$

The electron's Hamiltonian is then

$$\mathcal{H}_{CP}\psi = i\frac{G_F}{\sqrt{2}}C_SAn(\boldsymbol{r})\gamma^0\gamma_5\psi$$

Next, we need to find the **energy shift** this Hamiltonian piece generates:

$$\Delta E = \langle \Psi | \mathcal{H}_{CP} | \Psi \rangle$$

Where the wavefunction is that of the electron in an atom under an external electric field!



Without an external electric field, the electron's Hamiltonian is

$$H_{0} = \boldsymbol{\alpha} \cdot \boldsymbol{p} + m\gamma^{0} - e\Phi_{\text{int}}(\boldsymbol{r})$$

$$\Phi_{\text{int}}(\boldsymbol{r}) = \begin{cases} r > R_{N} & \frac{(Z-1)}{r(1+br)^{2}} \exp(-ar) + \frac{1}{r} \\ r < R_{N} & \left[\frac{(Z-1)}{(1+br)^{2}} \exp(-ar) + 1\right] \left(3 - \frac{r^{2}}{R_{N}^{2}}\right) \frac{1}{2R_{N}} \end{cases}$$

Madified Tiez potential

Whose solutions are  $|\psi_n
angle$ 

As an external electric field is applied, the ground state is modified as

$$|\Psi\rangle = |\psi_0\rangle + eE_z|\eta\rangle$$

Where, by perturbation theory

$$|\eta\rangle = \sum_{n \neq 0} \frac{|\psi_n\rangle \langle \psi_n | z | \psi_0 \rangle}{E_0 - E_n}$$

Note it has opposite parity if compared to the ground state

The energy shift is then

 $\Delta E = eE_z \langle \psi_0 | \mathcal{H}_{CP} | \eta \rangle + eE_z \langle \eta | \mathcal{H}_{CP} | \psi_0 \rangle$ 

 $= 2eE_z \Re \left( \langle \psi_0 | \mathcal{H}_{CP} | \eta \rangle \right) \;,$ 

So that we identify

$$\Delta E = d_{\text{equiv}} E_z$$

The constant factor should be equivalent to an EDM.

The shift is proportional to E<sub>ext</sub>!

 $d_{\text{equiv}} = 2e\Re\left(\langle\psi_0|\mathcal{H}_{CP}|\eta\rangle\right)$ 

Let us make a few comments on these spinors

- The spinors of the ground state  $|\psi_0\rangle$  and  $|\eta\rangle$  are solutions of the Dirac and of the Sternheimer equations, respectively
- We will use data on the thallium atom (A=205 and Z=81)

The ground state is

$$(\psi_0)_{J=\frac{1}{2},m=\frac{1}{2}}^{l=1} = \begin{pmatrix} \frac{i}{r}G_{l,J=\frac{1}{2}}(r)\phi_{\frac{1}{2},\frac{1}{2}}^l \\ \frac{1}{r}F_{l,J=\frac{1}{2}}(r)(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{r}})\phi_{\frac{1}{2},\frac{1}{2}}^l \end{pmatrix}$$

$$In these spinors we use:$$

$$(\psi_0)_{J=\frac{1}{2},m=\frac{1}{2}}^{l=0} = \begin{pmatrix} \frac{i}{r}G_{l,J=\frac{1}{2}}^S(r)\phi_{\frac{1}{2},\frac{1}{2}}^l \\ \frac{1}{r}F_{l,J=\frac{1}{2}}^S(r)\phi_{\frac{1}{2},\frac{1}{2}}^l \end{pmatrix}$$

$$(\psi_0)_{J=\frac{1}{2},m=\frac{1}{2}}^{l=0} = \begin{pmatrix} \frac{i}{r}G_{l,J=\frac{1}{2}}^S(r)\phi_{\frac{1}{2},\frac{1}{2}}^l \\ \frac{1}{r}F_{l,J=\frac{1}{2}}^S(r)\phi_{\frac{1}{2},\frac{1}{2}}^l \end{pmatrix}$$

$$(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{r}})\phi_{\frac{1}{2},\frac{1}{2}}^l \end{pmatrix}$$

$$(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{r}})\phi_{\frac{1}{2},\frac{1}{2}}^l \end{pmatrix}$$

$$(\psi_0)_{J=\frac{1}{2},m=\frac{1}{2}}^{l=0} = \begin{pmatrix} \frac{i}{r}G_{l,J=\frac{1}{2}}^S(r)\phi_{\frac{1}{2},\frac{1}{2}}^l \\ \frac{1}{r}F_{l,J=\frac{1}{2}}^S(r)\phi_{\frac{1}{2},\frac{1}{2}}^l \end{pmatrix}$$

$$(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{r}})\phi_{\frac{1}{2},\frac{1}{2}}^l \end{pmatrix}$$

$$(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{r}})\phi_{\frac{1}{2},\frac{1}{2}^l \end{pmatrix}$$

$$(\boldsymbol{\sigma}\cdot\hat{$$

while the first-order correction is

Using these spinors, we get

$$d_{\rm equiv} = 2e \frac{G_F}{\sqrt{2}} \frac{3AC_S}{4\pi R_N^3} \int_0^{R_N} \left(G F^S + G^S F\right) dr$$

Using the numerical estimates in [B. Lee Roberts and W. J. Marciano, Lepton Dipole Moments]

 $d_{\rm equiv} = 6.8 \times 10^4 C_S G_F$ 

This contribution cannot be larger than the experimental upper limit, which implies

$$d_{
m equiv} = 6.8 \times 10^4 C_S G_F < 1.1 \times 10^{-29} e \cdot cm$$
  
 $C_S < 7.3 \times 10^{-10}$  The Fermi constant G<sub>F</sub> is known

#### Generalized electron-nucleon couplings

#### Now we know to read EDM contributions from the couplings;

- Next we need to generalize them using Lorentz-violating background tensors
- First let us look at the rank-1 case

 $\mathcal{L}_{\rm LV} = (k_{XX})_{\mu} \left[ \left( \bar{N} \, \Gamma_1 \, N \right) \left( \bar{\psi} \, \Gamma_2 \, \psi \right) \right]^{\mu}$ 

Inspired by [Phys. Rev. D 99, 056016 (2019)]

- Each X stands for the type of Dirac bilinear: Scalar (A), Pseudoscalar (P), Vector (V), Axial Vector (A), and Tensor (T) (remember they have dimension-6)
- Let us have a look at the possibilities (LOOK FOR P- and T-ODD COMPONENTS ONLY)

#### Motivations?

- Non null vacuum expectation values from possible higher-energy Physics
- Anisotropic properties to the spacetime > (minute) Lorentz Symmetry\* and/or CPT violations
- Please have a look at <<<u>https://lorentz.sitehost.iu.edu/kostelecky/faq.html</u>>>
- A very versatile framework subject to stringent experimental data

#### Rank-1 LV electron-nucleon couplings

TABLE I. General *CPT*-odd couplings with a rank-1 LV tensor and Dirac bilinears. NRL stands for the nonrelativistic limit for the nucleons (N). In this limit, the coupling component can be suppressed, "S," or not suppressed, "NS."

| Coupling                                                                    | P-odd, T-odd piece                                         | NRL   | EDM   |
|-----------------------------------------------------------------------------|------------------------------------------------------------|-------|-------|
| $(k_{SV})_{\mu}(\bar{N}N)(\bar{\psi}\gamma^{\mu}\psi)$                      | $(k_{SV})_i (ar{N}N) (ar{\psi} \gamma^i \psi)$             | NS    | Yes   |
| $(k_{VS})_{\mu}(ar{N}\gamma^{\mu}N)(ar{\psi}\psi)$                          | $(k_{VS})_i (ar{N} \gamma^i N) (ar{\psi} \psi)$            | S     | • • • |
| $(k_{VP})_{\mu}(\bar{N}\gamma^{\mu}N)(\bar{\psi}i\gamma_{5}\psi)$           | $(k_{VP})_0 (ar{N} \gamma^0 N) (ar{\psi} i \gamma_5 \psi)$ | NS    | Yes   |
| $(k_{PV})_{\mu}(\bar{N}i\gamma_5N)(\bar{\psi}\gamma^{\mu}\psi)$             | $(k_{PV})_0 (\bar{N}\gamma_5 N) (\bar{\psi}\gamma^0 \psi)$ | S     | • • • |
| $(k_{SA})_{\mu}(\bar{N}N)(\bar{\psi}\gamma^{\mu}\gamma_{5}\psi)$            | None                                                       | • • • | • • • |
| $(k_{AS})_{\mu}(\bar{N}\gamma^{\mu}\gamma_{5}N)(\bar{\psi}\psi)$            | None                                                       | • • • | • • • |
| $(k_{PA})_{\mu}(\bar{N}i\gamma_5N)(\bar{\psi}\gamma^{\mu}\gamma_5\psi)$     | None                                                       | • • • | • • • |
| $(k_{AP})_{\mu}(\bar{N}\gamma^{\mu}\gamma_{5}N)(\bar{\psi}i\gamma_{5}\psi)$ | None                                                       | • • • | • • • |

### We could try other possibilities, but they are redundant

#### (particular cases of rank-3 couplings!)

| TABLE II.    | Redundant C                                 | PT-odd           | couplings | with a | a rank-1 | LV |
|--------------|---------------------------------------------|------------------|-----------|--------|----------|----|
| tensor and r | natrixes $\gamma^{\mu}$ , $\sigma^{\mu\nu}$ | , and $\gamma^2$ | 5.        |        |          |    |

| Coupling                                                                        | P-odd, T-odd piece                                                   | NRL | EDM |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------|-----|-----|
| $\overline{(k_{VT})_{ u}(ar{N}\gamma_{\mu}N)(ar{\psi}\sigma^{\mu u}\psi)}$      | None                                                                 | ••• | ••• |
| $(k_{AT})_{\nu}(\bar{N}\gamma_{\mu}\gamma_{5}N)(\bar{\psi}\sigma^{\mu\nu}\psi)$ | $(k_{AT})_0 (\bar{N}\gamma_i\gamma_5 N) (\bar{\psi}\sigma^{i0}\psi)$ | NS  | Yes |
| $(k_{TV})_{ u}(ar{N}\sigma^{\mu u}N)(ar{\psi}\gamma_{\mu}\psi)$                 | None                                                                 | ••• | ••• |
| $(k_{TA})_{\nu}(\bar{N}\sigma^{\mu\nu}N)(\bar{\psi}\gamma_{\mu}\gamma_{5}\psi)$ | $(k_{TA})_0 (\bar{N}\sigma^{i0}N)(\bar{\psi}\gamma_i\gamma_5\psi)$   | S   | ••• |

#### Free Lorentz-index >>> More possibilities!

#### Rank-1 electron-nucleon Couplings

There are 2 contributions arising from rank-1 couplings  $H_{\text{LV}e-1} = \left[-\left(k_{SV}\right)_i A \gamma^{\mathbf{Q}} - \left(k_{VP}\right)_0 A i \gamma^0 \gamma_5\right] \cdot n(\mathbf{r})$ According to the results  $(\psi_0|\gamma^0\gamma^i|\eta) = i\delta_{i3} \int_0^{R_N} \left[\frac{1}{3}F^S(r)G(r) + G^S(r)F(r)\right] dr ,$ Later we'll assume the 3<sup>rd</sup> is approximately this (known) integral  $\langle \psi_0 | \gamma_5 | \eta \rangle = i \int_0^{R_N} \left[ -F^S(r) G(r) + G^S(r) F(r) \right] dr ,$  $\int_0^{n_N} \left[ F^S(r) G(r) + G^S(r) F(r) \right] dr$  $\langle \psi_0 | i \gamma^i | \eta \rangle = \delta_{i3} \int_0^{R_N} \left[ -\frac{1}{3} F^S(r) G(r) + G^S(r) F(r) \right] dr ,$ Only the k<sub>VP</sub> contribution is real in  $\frac{\Delta E}{E_z} = 2e \Re \left[ \langle \psi_0 | H_{P,T} | \eta \rangle \right] \equiv d_{equiv}$ . Its contribution is: The only contribution of rank-1  $|d_{1-\text{equiv}}| = 2e \left(k_{VP}\right)_0 \frac{3A}{4\pi R_M^3} \int_0^{R_N} \left[F^S(r)G(r) + G^S(r)F(r)\right] dr$  $|(k_{VP})_0| < 1.6 \times 10^{-15} \, (\text{GeV})^{-2}.$ 

#### Rank-2 electron-nucleon Couplings

#### ▶ For the rank-2 case, the possibilities are

| Coupling                                                                               | P-odd and T-odd piece                                                 | NRL | EDM |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----|-----|
| Rank-2                                                                                 |                                                                       |     |     |
| $(k_{VV})_{\mu u}(ar{N}\gamma^{\mu}N)(ar{\psi}\gamma^{ u}\psi)$                        | $(k_{VV})_{i0}(ar{N}\gamma^iN)(ar{\psi}\gamma^0\psi)$                 | S   |     |
|                                                                                        | $(k_{VV})_{0i}(ar{N}\gamma^0N)(ar{\psi}\gamma^i\psi)$                 | NS  | Yes |
| $(k_{AV})_{\mu u}(ar{N}\gamma^{\mu}\gamma_5 N)(ar{\psi}\gamma^{ u}\psi)$               | None                                                                  |     |     |
| $(k_{VA})^{\prime}_{\mu u}(\bar{N}\gamma^{\mu}N)(\bar{\psi}\gamma^{ u}\gamma_{5}\psi)$ | None                                                                  |     |     |
| $(k_{AA})_{\mu u}(\bar{N}\gamma^{\mu}\gamma_5N)(\bar{\psi}\gamma^{\nu}\gamma_5\psi)$   | $(k_{AA})_{0i}(ar{N}\gamma^0\gamma_5N)(ar{\psi}\gamma^i\gamma_5\psi)$ | S   |     |
|                                                                                        | $(k_{AA})_{i0}(ar{N}\gamma^i\gamma_5N)(ar{\psi}\gamma^0\gamma_5\psi)$ | NS  | Yes |
| $(k_{TS})_{\mu u}(ar{N}\sigma^{\mu u}N)(ar{\psi}\psi)$                                 | None                                                                  |     |     |
| $(k_{TP})_{\mu u}(\bar{N}\sigma^{\mu u}N)(\bar{\psi}i\gamma_5\psi)$                    | None                                                                  |     |     |
| $(k_{ST})_{\mu u}(\bar{N}N)(\bar{\psi}\sigma^{\mu u}\psi)$                             | None                                                                  |     |     |
| $(k_{PT})_{\mu u}(\bar{N}i\gamma_5N)(\bar{\psi}\sigma^{\mu u}\psi)$                    | None                                                                  |     |     |

2 candidates, but we'll see only 1 yields non-zero EDM

#### Rank-2 electron-nucleon Couplings

The Hamiltonian arising from these two contributions are

$$H_{\text{LV}e-2} = \left[ -\left(k_{VV}\right)_{0i} A\gamma^0 \gamma^i - \left(k_{AA}\right)_{i0} \langle \sigma^i \rangle_N \gamma_5 \right] \cdot n(\boldsymbol{r})$$

Observe

The first term yields no contribution because 
$$\frac{\Delta E}{E_z} = 2e\Re \left[ \langle \psi_0 | H_{P,T} | \eta \rangle \right] \equiv d_{\text{equiv}}$$

- 2. The second term depends on the valence nucleon's spin, because the nucleon's spins do not add coherently! But it does not matter: its contribution is not real.
- The take-home lesson: for couplings dependent on the nucleons' spins, the bounds are 205 larger (less stringent) than the one on rank-1 (only the valence nucleon's spin counts!).

### Rank-3 and 4 electron-nucleon Couplings

We can extend the same analysis for the rank-3 and rank-4 cases:

| $(k_{VT})_{lpha\mu u}(ar{N}\gamma^{lpha}N)(ar{\psi}\sigma^{\mu u}\psi)$         | None                                                                      | •••• |     |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|------|-----|
| $(k_{AT})_{lpha\mu u}(ar{N}\gamma^{lpha}\gamma_5N)(ar{\psi}\sigma^{\mu u}\psi)$ | $(k_{AT})_{0ij}(ar{N}\gamma^0\gamma_5N)(ar{\psi}\sigma^{ij}\psi)$         | S    |     |
|                                                                                 | $(k_{AT})_{i0j}(ar{N}\gamma^i\gamma_5N)(ar{\psi}\sigma^{0j}\psi)$         | NS   | Yes |
|                                                                                 | $(k_{AT})_{ij0}(ar{N}\gamma^i\gamma_5N)(ar{\psi}\sigma^{j0}\psi)$         | NS   | Yes |
| $(k_{TV})_{lpha\mu u}(ar{N}\sigma^{\mu u}N)(ar{\psi}\gamma^{lpha}\psi)$         | None                                                                      |      |     |
| $(k_{TA})_{lpha\mu u}(ar{N}\sigma^{\mu u}N)(ar{\psi}\gamma^{lpha}\gamma_5\psi)$ | $(k_{TA})_{0ij}(ar{N}\sigma^{ij}N)(ar{\psi}\gamma^0\gamma_5\psi)$         | NS   | Yes |
|                                                                                 | $(k_{TA})_{i0j}(\bar{N}\sigma^{0j}N)(\bar{\psi}\gamma^{i}\gamma_{5}\psi)$ | S    |     |
|                                                                                 | $(k_{TA})_{ij0}(ar{N}\sigma^{j0}N)(ar{\psi}\gamma^i\gamma_5\psi)$         | S    |     |
| Rank-4                                                                          |                                                                           |      |     |
| $(k_{TT})_{lphaeta\mu u}(ar{N}\sigma^{lphaeta}N)(ar{\psi}\sigma^{\mu u}\psi)$   | $(k_{TT})_{0ijk} (ar{N} \sigma^{0i} N) (ar{\psi} \sigma^{jk} \psi)$       | S    |     |
|                                                                                 | $(k_{TT})_{i0jk}(ar{N}\sigma^{i0}N)(ar{\psi}\sigma^{jk}\psi)$             | S    |     |
|                                                                                 | $(k_{TT})_{ij0k} (ar{N} \sigma^{ij} N) (ar{\psi} \sigma^{0k} \psi)$       | NS   | Yes |
|                                                                                 | $(k_{TT})_{ijk0}(\bar{N}\sigma^{ij}N)(\bar{\psi}\sigma^{k0}\psi)$         | NS   | Yes |

We found, for example:

Note this bound is 205 times larger than the one we found for the rank-1 case:  $1.6 \times 10^{-15} \,(\text{GeV})$  $|(k_{AT})_{i03}| < 3.2 \times 10^{-13} \ (\text{GeV})^{-2}$ 

## Rank-3 and 4 electron-nucleon Couplings

The Hamiltonian contributions from the rank-3 and rank-4 cases

$$\begin{aligned} H_{\text{LVe}-3} &= \left[ (k_{AT})_{i0j} \langle \sigma^i \rangle_N i \gamma^0 \alpha^j - (k_{AT})_{ij0} \langle \sigma^i \rangle_N i \gamma^0 \alpha^j \right. \\ &- (k_{TA})_{0ij} \epsilon_{ijk} \langle \sigma^k \rangle_N \gamma_5 \right] \cdot n(\mathbf{r}), \\ H_{\text{LVe}-4} &= \left[ -(k_{TT})_{ij0k} \epsilon_{ijl} \langle \sigma^l \rangle_N i \gamma^0 \alpha^k \right. \\ &+ (k_{TT})_{ijk0} \epsilon_{ijl} \langle \sigma^l \rangle_N i \gamma^0 \alpha^k \right] \cdot n(\mathbf{r}), \end{aligned}$$

Bounds on rank-3 tensors:

$$|(k_{AT})_{i03}| < 3.2 \times 10^{-13} \text{ (GeV)}^{-2},$$
  
 $|(k_{AT})_{i30}| < 3.2 \times 10^{-13} \text{ (GeV)}^{-2},$ 

Redefining:  

$$(k_{TT})_{ij0k}\epsilon_{ijl} = (K_{TT})_{0kl}$$

Bounds on rank-4 tensors:

$$|(K_{TT})_{03l}| < 3.2 \times 10^{-13} \text{ (GeV)}^{-2},$$
  
 $|(K_{TT})_{30l}| < 3.2 \times 10^{-13} \text{ (GeV)}^{-2}.$ 

#### Sidereal Variations

- The LV tensors are not constant in the Lab's Reference Frame (RF)
- ▶ The closest to an inertial RF we got is the Sun >>> A transformation is needed!
- ▶ It turns out that, for not-so-long-experiments, we only need a rotation!

$$B_{\mu\nu}^{(\text{Lab})} = \mathcal{R}_{\mu\alpha} \mathcal{R}_{\nu\beta} B_{\alpha\beta}^{(\text{Sun})}$$

$$R_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\chi \cos\Omega t & \cos\chi \sin\Omega t & -\sin\chi \\ 0 & -\sin\Omega t & \cos\Omega t & 0 \\ 0 & \sin\chi \cos\Omega t & \sin\chi \sin\Omega t & \cos\chi \end{pmatrix}$$
Choose the set of the set

Chi: Lab's colatitude Omega: Earth's rotation angular velocity

Next we time-average them in the Sun's RF.

Not all of them survive this step; here goes a list of the ones that do

#### Sidereal Variations

TABLE V. Bounds on the LV tensors of ranks ranging from 1 to 4.

| Component                                                                                                                                                                             |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $\left (k_{VP})_0^{(\mathrm{Sun})}\right $                                                                                                                                            | 1.6 |
| $\left  \frac{1}{4} \left[ (k_{AT})_{101}^{(\text{Sun})} + (k_{AT})_{202}^{(\text{Sun})} - 2(k_{AT})_{303}^{(\text{Sun})} \right] \sin 2\chi \right $                                 | 3.2 |
| $\left[ \left[ -(k_{AT})_{102}^{(\text{Sun})} + (k_{AT})_{201}^{(\text{Sun})} \right] \sin \chi \right]$                                                                              | 3.2 |
| $\left[\frac{1}{2}\left((k_{AT})_{101}^{(\text{Sun})} + (k_{AT})_{202}^{(\text{Sun})}\right)\sin^2\chi + (k_{AT})_{303}^{(\text{Sun})}\cos^2\chi\right]$                              | 3.2 |
| $\left \frac{1}{4}\left[(k_{AT})_{110}^{(\text{Sun})} + (k_{AT})_{220}^{(\text{Sun})} - 2(k_{AT})_{330}^{(\text{Sun})}\right]\sin 2\chi\right $                                       | 3.2 |
| $\left[ \left[ -(k_{AT})_{120}^{(\text{Sun})} + (k_{AT})_{210}^{(\text{Sun})} \right] \sin \chi \right]$                                                                              | 3.2 |
| $\left[\frac{1}{2}\left((k_{AT})_{110}^{(\text{Sun})} + (k_{AT})_{220}^{(\text{Sun})}\right)\sin^2\chi + (k_{AT})_{330}^{(\text{Sun})}\cos^2\chi\right]$                              | 3.2 |
| $\left \frac{1}{4}\left[(K_{TT})_{011}^{(\text{Sun})} + (K_{TT})_{022}^{(\text{Sun})} - 2(K_{TT})_{033}^{(\text{Sun})}\right]\sin 2\chi\right $                                       | 3.2 |
| $\left  \left[ (K_{TT})_{012}^{(\text{Sun})} - (K_{TT})_{021}^{(\text{Sun})} \right] \sin \chi \right $                                                                               | 3.2 |
| $\left  \left[ \frac{1}{2} \left( (K_{TT})_{011}^{(\text{Sun})} + (K_{TT})_{022}^{(\text{Sun})} \right) \sin^2 \chi + (K_{TT})_{033}^{(\text{Sun})} \cos^2 \chi \right] \right $      | 3.2 |
| $\left \frac{1}{4}\left[(K_{TT})_{101}^{(\text{Sun})} + (K_{TT})_{202}^{(\text{Sun})} - 2(K_{TT})_{303}^{(\text{Sun})}\right]\sin 2\chi\right $                                       | 3.2 |
| $\left[ \left[ (K_{TT})_{102}^{(\text{Sun})} - (K_{TT})_{201}^{(\text{Sun})} \right] \sin \chi \right]$                                                                               | 3.2 |
| $\left  \bar{\left[ \frac{1}{2} \left( (K_{TT})_{101}^{(\text{Sun})} + (K_{TT})_{202}^{(\text{Sun})} \right) \sin^2 \chi + (K_{TT})_{303}^{(\text{Sun})} \cos^2 \chi \right] \right $ | 3.2 |

|          | Upper bound                             |
|----------|-----------------------------------------|
|          | $1.6 \times 10^{-15} (\text{GeV})^{-2}$ |
|          | $3.2 \times 10^{-13} (\text{GeV})^{-2}$ |
| Cor      | $3.2 \times 10^{-13} (\text{GeV})^{-2}$ |
|          | $3.2 \times 10^{-13} (\text{GeV})^{-2}$ |
| $^{1}De$ | $3.2 \times 10^{-13} (\text{GeV})^{-2}$ |
|          | $3.2 \times 10^{-13} (\text{GeV})^{-2}$ |
|          | $3.2 \times 10^{-13} (\text{GeV})^{-2}$ |

- These are the first bounds on these coefficients, which where recently proposed by Kostelecky;
- Next we comment on a few other couplings we haven't covered

#### These results were published in

PHYSICAL REVIEW D 100, 015046 (2019)

#### Constraining dimension-six nonminimal Lorentz-violating electron-nucleon interactions with EDM physics

Jonas B. Araujo,<sup>1,2,\*</sup> A. H. Blin,<sup>3,†</sup> Marcos Sampaio,<sup>2,4,‡</sup> and Manoel M. Ferreira, Jr.<sup>1,§</sup> <sup>1</sup>Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, São Luís—MA, 65080-805, Brazil <sup>2</sup>Centre for Particle Theory, University of Durham, Durham, DH1 3LE, United Kingdom <sup>3</sup>CFisUC, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal <sup>4</sup>CCNH, Universidade Federal do ABC, 09210-580, Santo André—SP, Brazil

### Comments on other couplings

Kostelecky's paper contains terms as

 $\begin{aligned} &(k_{SS})(\bar{N}N)(\bar{\psi}\psi), \quad (k_{PP})(\bar{N}i\gamma_5N)(\bar{\psi}i\gamma_5\psi), \\ &(k_{SP})(\bar{N}N)(\bar{\psi}i\gamma_5\psi), \quad (k_{PS})(\bar{N}i\gamma_5N)(\bar{\psi}\psi), \end{aligned}$ 

These are not LV. In fact, one of them is identical to the usual Scalar-Pseudoscalar contribution

 $\mathcal{L}_{\psi\psi}^{(6)} = i(\kappa_{SP})(\bar{\psi}\psi)(\bar{\psi}\gamma^5\psi).$ 

Is identical to

$$\mathcal{L}_{CP} = -\frac{G_F}{\sqrt{2}} \sum_j C_S \bar{N}_j N_j \bar{\psi} i \gamma_5 \psi$$





Also, we consider different spinors, so our possibilities double!

#### Future Perspectives

Improve bounds by evaluating the integral:

 $\langle \psi_0 | i \gamma^i | \eta \rangle = \delta_{i3} \int_0^{R_{\text{Nucleus}}} \left[ -\frac{1}{3} F^S(r) G(r) + G^S(r) F(r) \right] dr,$  Numerical issues!

What if we consider only usual couplings:

$$\bar{N}N \cdot \bar{e}\gamma^{5}e \\
\bar{N}\gamma^{\mu}N \cdot \bar{e}\gamma_{\mu}\gamma^{5}e \\
\bar{N}\sigma^{\mu\nu}N \cdot \bar{e}\sigma_{\mu\nu}\gamma^{5}e \\
\bar{N}\gamma^{\mu}\gamma^{5}N \cdot \bar{e}\gamma_{\mu}e \\
\bar{N}\gamma^{5}N \cdot \bar{e}e$$

And then correct the electron's spinor by a dimension-5 coupling?

 $\mathcal{L}_{\psi F}^{(5)} \qquad -\frac{1}{2}m_{F}^{(5)\alpha\beta}F_{\alpha\beta}\overline{\psi}\psi - \frac{1}{2}im_{5F}^{(5)\alpha\beta}F_{\alpha\beta}\overline{\psi}\gamma_{5}\psi - \frac{1}{2}a_{F}^{(5)\mu\alpha\beta}F_{\alpha\beta}\overline{\psi}\gamma_{\mu}\psi - \frac{1}{2}b_{F}^{(5)\mu\alpha\beta}F_{\alpha\beta}\overline{\psi}\gamma_{5}\gamma_{\mu}\psi - \frac{1}{4}H_{F}^{(5)\mu\nu\alpha\beta}F_{\alpha\beta}\overline{\psi}\sigma_{\mu\nu}\psi$ 

# Thank you for your time ③

