

Opening a new Era in Exotic Nuclear Physics: FAIR

FC	
Ciênci	as
ULisbo	a

Daniel Galaviz Redondo

Departamento de Física Faculdade de Ciências da U-Lisboa LIP-Lisboa

Lisboa, LIP Seminar

December 12th, 2019

Daniel Galaviz Redondo

Outline

- Motivation:
 - Exotic nuclei
 - Places in nature where we find them
- **FAIR: Facility for Antiproton and Ion Research**
 - Experimental setup (LAND/R³B)
 - Results on particle-exclusive and particle-inclusive neutron knock-out on a proton target
 - Results on measurement of high-energy photons with CALIFA @ CTN-Lisbon
- Towards Phase-0 @ FAIR.... next year!

Exotic

Definition:

(Cambridge Dictionary)

English:

unusual and exciting because of coming (or seeming to come) from far away, especially a tropical country

American:

unusual and specially interesting because of coming from a country that is far away

Daniel Galaviz Redondo

Table of Isotopes

Daniel Galaviz Redondo

Table of Isotopes

Daniel Galaviz Redondo

Table of Isotopes

Daniel Galaviz Redondo

Opening a new Era in Exotic Nuclear Physics: FAIR

Exotic Nuclei in Nature

★ Do they exist?

Isotopes with half-live > Solar System:

235U, 238U, 232Th, 40K, 36Cl

Pictures from L. Peralta's Lab

Daniel Galaviz Redondo

Exotic Nuclei in Nature

t Do they exist?

Interest in Exotic Nuclei

***** Applications:

- Radiopharmaceuticals (¹²³I, ¹³¹I, ^{99m}Tc, ¹⁸F)
- Gammagraphy (⁶⁰Co, ¹³⁷Cs)
- $\blacktriangleright \text{Dating } ({}^{14}\text{C}, {}^{87}\text{Rb})$
- ***** Basic Research:
 - Nuclear Interaction Properties
 - Origin of the Elements in the Universe

Exotic Nuclei in the Universe

Overview of main astrophysical processes

Adopted from Adriana Banu, JMU

Daniel Galaviz Redondo

Opening a new Era in Exotic Nuclear Physics: FAIR

... and Neutron Star Collisions

SWIFT NEUTRON STAR COLLISION V. 2

ANIMATION: DANA BERRY 310-441-1735 PRODUCED BY ERICA DREZEK

Daniel Galaviz Redondo

Opening a new Era in Exotic Nuclear Physics: FAIR

... and Neutron Star Collisions

LETTER

doi:10.1038/nature24453

Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event

Daniel Kasen^{1,2}, Brian Metzger³, Jennifer Barnes³, Eliot Quataert¹ & Enrico Ramirez-Ruiz^{4,5}

Discovery of the electromagnetic counterpart to the GW170817 → Provides the first evidence for r-process nucleosynthesis.

Daniel Galaviz Redondo

FAIR

13

GSI

100 metres

Daniel Galaviz Redondo

Opening a new Era in Exotic Nuclear Physics: FAIR

GSI

Helmholtzzentrum für Schwerionenforschung

Located in Darmstadt (Hessen) Founded in 1969

Employs about 1400 people

Best known results are:

Discovery of six new chemical elements (from 107Bh till 112Cn)

KASR

1990: Commissioning of SIS18 and ESR

Federal Ministry of Education and Research gives green light to FAIR

2010: FAIR is **founded** by 9 partners

2017: FAIR starts **civil construction**

100 metres

Daniel Galaviz Redondo

FAIR

The Universe in the Laboratory

Research at the world-wide unique international particle accelerator facility

Facility for Antiproton and Ion Research, Darmstadt, Germany

https://fair-center.eu

Daniel Galaviz Redondo

Opening a new Era in Exotic Nuclear Physics: FAIR

Pillars

Daniel Galaviz Redondo

LAND/R³B

Opening a new Era in Exotic Nuclear Physics: FAIR

Halo nuclei

11**Be**

• Cluster structure + halo particle(s)

• Extended mass distribution

• Low separation energy (< 1 MeV)

Low angular momentum state (s-wave)

Halo nuclei: ¹¹Be & ¹⁵C

	S _n (MeV)	g.s. (J ^π)	g.s. conf.
¹¹ Be	0.5	1/2+	α [¹⁰ Be(0+) \otimes 1v (2s _{1/2})] \oplus β [¹⁰ Be(2+) \otimes 1v (1d _{5/2})]
15 C	1.2	1/2+	$^{14}\mathrm{C(0+)}\otimes 1\mathrm{v}(2\mathrm{s}_{1/2})$

¹¹Be

- T. Aumann et al., Phys. Rev. Lett. 84, 35(2000)
- J. A. Tostevin et al., Phys. Rev. C 66, 024607 (2002)
- N. Fukuda et al., Phys. Rev. C 70, 054606 (2003)

15**C**

- J. A. Tostevin et al., Phys. Rev. C 66, 024607 (2002)
- U. Datta Pramanik et al., Phys. Lett. B 551, 63 (2003)
- T. Nakamura et al., Phys. Rev. C 79, 035805 (2009)

Suitable cases for the verification of the **reaction mechanism** studying its **break-up** on a **proton** target at **relativistic energies**

Nucleon knock-out contributions

Reaction theory

Space Truncation

- **Projectile** well described as C + N
- **Core** assumed to be **inert** during the collision process (possible to account on core excitation admixtures on the wave function)
- Excited states above threshold generally not included

 $\mathcal{H} = \mathcal{H}_a \oplus \mathcal{H}_b$

 \oplus

Reaction theory: Faddeev/AGS

- Non-relativistic
- **Truncated Hilbert space**

- Each particle is treated **on an equal footing** to the others
- Takes into account **all open channels** simultaneously
- Formulated in terms of the **transition amplitude** for each interacting pair

$$t_{\gamma} = v_{\gamma} + v_{\gamma} G_0 t_{\gamma}$$

Pair transition operators $G_0 = (E + i0 - H_0)^{-1}$
Free propagator

Tool for investigating:

Single particle properties

Spectroscopic factors

Experiment S393 at Cave C

S393 experiment at LAND/R³B

GSI Experiment **S393**

"Neutron-rich Nuclei at and Beyond the Dripline in the Range Z=4 to Z=10 Studied in Kinematically Complete Measurements of Direct Reactions at Relativistic Energies"

- Primary beam: ⁴⁰Ar (600 MeV/u)
- Primary target: Be: 4 g/cm²
- Secondary cocktail beam @ (500 MeV/u)
 6 different settings:

4 < Z < 101,5 < A/Z < 3

- Several secondary targets for different reactions:
 - * Pb target (coulomb excitation)
 - * CH₂
 - * C

Neutrons

LAND/R³B setup

Incoming Beam Identification

Opening a new Era in Exotic Nuclear Physics: FAIR

LAND/R³B setup

Target detectors

Target detectors

Opening a new Era in Exotic Nuclear Physics: FAIR

LAND/R³B setup

Opening a new Era in Exotic Nuclear Physics: FAIR

Heavy Fragment branch

Daniel Galaviz Redondo

Heavy fragment identification

Opening a new Era in Exotic Nuclear Physics: FAIR

LAND / R³B Setup

Reaction: AX(p,pn)A-1X

Daniel Galaviz Redondo

LAND / R³B Setup

Particle Inclusive knock-out reaction

Daniel Galaviz Redondo

LAND / R³B Setup

Particle Exclusive knock-out reaction

Daniel Galaviz Redondo

Particle Exclusive knock-out reaction

11**Be**

Daniel Galaviz Redondo

Opening a new Era in Exotic Nuclear Physics: FAIR

Faddeev/AGS calculations for single particle **valence** and **inner core** neutrons

Allows the evaluation of different knockout contributions

 $\sigma_{\text{total}} = a \sigma_{\text{valence}} + b \sigma_{\text{inner}}$

The different weights are obtained via minimization of the reduced χ^2 function.

Particle Exclusive knock-out reaction

¹¹Be

Daniel Galaviz Redondo

Opening a new Era in Exotic Nuclear Physics: FAIR

Particle Inclusive knock-out reaction

¹¹Be

Daniel Galaviz Redondo

Opening a new Era in Exotic Nuclear Physics: FAIR

Knock-out cross sections

	Particle Inclusive		Particle Exclusive	
	11 Be	15 C	¹¹ Be	15 C
Total Exp	$52 \pm 5 \text{ mb}$	$72 \pm 19 \text{ mb}$	$37 \pm 15 \text{ mb}$	$35 \pm 14 \text{ mb}$
Total Theo	55 mb	70 mb	36 mb	35 mb
a o _{valence}	32 mb		29 mb	17 mb
b σ _{inner}	23 mb		7 mb	18 mb

Daniel Galaviz Redondo

Opening a new Era in Exotic Nuclear Physics: FAIR

Photon spectrum with X-Ball

Daniel Galaviz Redondo

Photon spectrum with X-Ball

Daniel Galaviz Redondo

From LAND/R³B ...

Towards R³B (a) FAIR

Reactions with Relativistic Radioactive Beams

CALIFA

CALorimeter for the In-Flight detection of gAmma rays and light charged particles

Extensive energy range photons: 0 – 20 MeV protons: 0 – 300 MeV

High energy resolution 1-10 %

Working conditions γ-ray spectrometer γ-ray calorimeter Hybrid detector

PIGE reaction

$$^{27}Al(p,\gamma)^{28}Si$$

to produce γ > 10 MeV to challenge CALIFA prototype

Nuclear reaction line @ tandem accelerator at LATR-CTN

More Information under <u>http://www.ctn.tecnico.ulisboa.pt</u>

Daniel Galaviz Redondo

Opening a new Era in Exotic Nuclear Physics: FAIR

Individual Crystal response

Daniel Galaviz Redondo

Calorimetric response

²⁷Al(p,y)²⁸Si* (E_{ex} ~13.7 MeV)

Daniel Galaviz Redondo

Opening a new Era in Exotic Nuclear Physics: FAIR

Daniel Galaviz Redondo

Daniel Galaviz Redondo

Daniel Galaviz Redondo

Daniel Galaviz Redondo

Opening a new Era in Exotic Nuclear Physics: FAIR

56

E_v (keV)

Towards Phase-0

Commissioning phase **beginning 2019**

Preparations in July 2018

Daniel Galaviz Redondo

Towards Phase-0

First experiments in 2020

Full forward part of CALIFA barrel mounting in Nov-Dec 2019

Daniel Galaviz Redondo

People a Lisbon

Daniel Galaviz Redondo

FAIR Civil Construction

Events

Ground-breaking ceremony, July 4

adopted from N. Kalantar

60

Daniel Galaviz Redondo

FAIR Civil Construction

FAIR CONSTRUCTION SITE

STATUS NOVEMBER 2019

FACILITY FOR ANTIPROTON AND ION RESEARCH IN EUROPE GMBH DARMSTADT, GERMANY

Daniel Galaviz Redondo