

EBL signatures from very high energy gamma-ray spectra

Daniel Mazin MPI for physics, Munich

Contents

- Extragalactic Background Light
- Constraints so far
- Pile-ups at high energy: what are they?
- Steady sources for EBL/cosmology studies
- Hubble constant issue

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Nikishov (1962), Jelley (1966), Gould & Schreder (1966)

slide from M Raue

The EBL energy density

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

The EBL energy density

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

The EBL energy density

Not much more EBL than the one from the resolved galaxies

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Combined Fermi-LAT and H.E.S.S. limits

- HESS and Fermi collaborations claim to see a EBL signature in their blazar spectra
- Assumption that there is no EBL can be excluded with 8σ and 6σ by HESS and Fermi, respectively
- The EBL model which best fits the data (i.e. make the spectra smooth) is very close to recent established EBL models

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Wiggles in spectra of AGN in very high state

precision EBL at Mid infrared

- Idea: if the measurement is precise enough, the spectral form will be sensitive to "wrong" EBL assumptions, and "wiggles" in the reconstructed spectrum would appear
- Here an example of Mrk 501 simulation:
 - blue points obtained with proper EBL model, no wiggles in residuals
 - green points obtained with a wrong (by 30%) EBL, wiggles clearly seen in the residuals

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Precision of EBL determination

 Precision of the method is between 15 and 30%, depending on 🧈 the assumed exposure of the AGN in flaring state

DM et al., APh 43 (2013), 241

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Precision of EBL determination

- Assume some 50 AGN at different redshifts, 0 < z < 1, are flaring for 10 hrs each; assume their spectra are known (through fit to intrinsic part of the spectrum where there is no EBL effect)
- Simulated two cases:
 - average flux during flaring episodes is 10% Crab, average index -2.6, intr. cutoff at 1 TeV and
 - average flux during flaring episodes is 50% Crab
- Fit resulting de-absorbed spectrum using $\chi 2$ fit

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Precision of EBL determination (update)

Precision of EBL determination (update)

- Obtained precision (preliminary) of the EBL level: 15-25% for 10% Crab level flares and and 10-15% for the 50% Crab flares
- Can go beyond z>1 if there are sources detectable by CTA

one can derive strong constraints as long as one has enough sources

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Pile ups in spectra of distant sources

can we actually assume smooth spectra to derive EBL constraints?

Max-Planck-Institut für Physik Bierer Henelery Initial

Earlier pile-ups

- Earlier observed pile-ups led to:
 - EBL constraints
 - reanalysis of the data
- It is understood that the last spectral point has a strong bias: point derived on a positive fluctuation (no point derived from a negative fluctuation)

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Earlier pile-ups

- Earlier observed pile-ups led to:
 - EBL constraints
 - reanalysis of the data
- It is understood that the last spectral point has a strong bias: point derived on a positive fluctuation (no point derived from a negative fluctuation)

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

More recent hints

highest points in measured VHE spectra often have tau>2

Horns&Meyer 2012

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Example spectra

red: τ > 2

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Example spectra

red: τ > 2

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Latest pile-ups: quite significant!

Amy Furniss et al., VERITAS PKS1424+240, z>0.6

Pepa Becerra et al., MAGIC PGI553+II3,z>0.4

we cannot go lower in the EBL density!

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Pile-ups at high energies

Pepa Becerra et al., MAGIC PG1553+113,z>0.4

Pile-ups at high energies: update

VERITAS, published PKSI424+240, z=0.6

Pepa Becerra et al., MAGIC PGI553+II3,z=0.4

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Pile ups in spectra of distant sources

can we actually assume smooth spectra to derive EBL constraints?

so far no clear evidence that we can't!

Sources of the EBL

Sensitivity

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Observability of the sky

- Visibility is shown for
 culmination below ZD=30°
 One can see that sources
 with culmination up to
 ZD=45° are also detected
 (but fewer)
- t Good complementarity of the sites
 - ❑ Number of useful hours:
 - ~1200h per year, including

moon time

DM & D. Semikoz, A. Zech 2014, in preparation

- Self-made Fermi/LAT catalog of AGN's at E>50 GeV using 2FGL sources
- Consistent with IFHL catalog (E>I0GeV)
- Comparison of CTA sites for detection of Fermi AGN's
- Detection of AGN's within redshift bins, step towards determination of EBL
- Hard spectrum sources and detection of IGMF

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Method

Ap Ap 2+ ft Max-Planck-Institut für Physik

DM & D. Semikoz, A. Zech 2014, in preparation

- Fermi/LAT spectra are extrapolated to the CTA energy regime using the redshift when available (used Shaw et al. lower limits for unknown redshifts)
- Exposure of 20h per source
- EBL model of Franceschini et al. (2008) is used
- Take into account zenith angle of culmination at site
- Caution: these are averaged fluxes, no flaring activity is considered in the analysis. However, no dramatic change when flaring sources are removed

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Cross-checks

DM & D. Semikoz, A. Zech 2014, in preparation

good correlation between detected blazars and CTA prediction

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Results

DM & D. Semikoz, A. Zech 2014, in preparation 20h exposure of every source

I) from 416 hard spectra sources, CTA can detect 186 (44%) if built everywhere

2) 52 sources (13%) already detected

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Results

NORTH

DM & D. Semikoz, A. Zech 2014, in preparation

I) from 416 hard spectra sources, CTA-NORTH can detect 128 (31%)

2) 48 sources (12%) already detected

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Results

SOUTH

DM & D. Semikoz, A. Zech 2014, in preparation

I) from 416 hard spectra sources, CTA-SOUTH can detect 88 (21%)

2) 31 sources (7%) already detected

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Expectations for North+South

	z<0.2	0.2 <z<0.4< th=""><th>0.4<z<0.6< th=""><th>0.6<z<0.8< th=""><th>z>0.8</th><th>Total</th></z<0.8<></th></z<0.6<></th></z<0.4<>	0.4 <z<0.6< th=""><th>0.6<z<0.8< th=""><th>z>0.8</th><th>Total</th></z<0.8<></th></z<0.6<>	0.6 <z<0.8< th=""><th>z>0.8</th><th>Total</th></z<0.8<>	z>0.8	Total
South	19	17	4		3	63
North	33	16	12	3	2	76
South +North	52	33	16 M & D Som	4 ikoz A Zec	5 h 2014 in 1	139 Dreparation

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014

Conclusions

- Good times for EBL constraints
- Even with lowest EBL possible, pile-ups at high energy. This is intriguing / disturbing
- GRBs: CTA can detect them up to z=6 if they are bright enough
- Sources for EBL/cosmology studies:
 - need redshift determination!
 - need monitoring of flaring activity, not many sources that can be detected otherwise
 - good potential to get 1-2 sources beyond z=0.8

D. Mazin, SciNeGHE 2014, Lisboa, June 4-6 2014