

The Galaxy Evolution View of the Extragalactic Background Light

Alberto Domínguez (University of California, Riverside)

Collaborators:

Joel Primack, Rachel Somerville, Rudy Gilmore, Francisco Prada

SciNeGHE, Lisbon, June 4-6, 2014

The local spectral energy distribution of the EBL

The local spectral energy distribution of the EBL

Methodologies for the EBL modeling

Type of modeling and refs.	Galaxy number evolution	Galaxy emission	
Type i, Forward evolution (<u>Somerville+ 12; Gilmore+ 12;</u> Inoue+ 13)	Semi-analytical models.	Modeled . Stars: Bruzual & Charlot 03 (BC03); Dust Absorption: Charlot & Fall, 00; Dust Re-emission: Rieke+ 09.	
Type ii, Backward evolution (Stecker+ 06; <i>Franceschini</i> + 08)	Observed local-optical galaxy luminosity functions (starburst population) and near-IR galaxy luminosity functions up to <i>z</i> =1.4 (elliptical and spiral populations)	Modeled . Consider only a few galaxy types based on optical images.	
Type iii, Inferred evolution (<i>Finke+ 10; Kneiske & Dole 10</i>)	Parameterization of the history of the star formation density of the universe. By construction, they do not include quiescent and AGN galaxies.	Modeled. Stars: Single bursts of solar metallicity from BC99 (Kneiske+)/BC03 (Finke+); Dust Absorption: General extinction law; Dust Re-emission: Modified black bodies.	
Type iv, Observed evolution (<i>Domínguez+ 11</i> ; Stecker+ 12; Helgason+ 12)	Observed near-IR galaxy luminosity functions up to z=4.	Observed . Multiwavelength photometry from the UV up to MIPS 24 for approximately 6,000 galaxies up to $z=1$. Consider 25 different galaxy types.	

Our SAMs are based on Monte Carlo realizations of dark matter halo mergers histories calculated using the modified and extended Press-Schechter methods.

Galaxy Formation in ACDM

- gas is collisionally heated when perturbations 'turn around' and collapse to form gravitationally bound structures
- gas in halos cools via atomic line transitions (depends on density, temperature, and metallicity)
- cooled gas collapses to form a rotationally supported disk
- cold gas forms stars, with efficiency a function of gas density (e.g. Schmidt-Kennicutt Law)
- massive stars and SNae reheat (and in small halos expel) cold gas and some metals
- galaxy mergers trigger bursts of star formation; 'major' mergers transform disks into spheroids and fuel AGN
- AGN feedback cuts off star formation

White & Frenk 91; Kauffmann+93; Cole+94; Somerville & Primack 99; Cole+00; Somerville, Primack, & Faber 01; Croton et al. 2006; Somerville +08; Fanidakis+09; Guo+2011; Somerville, Gilmore, Primack, & Domínguez 12 (discussed here)

Type ii: Backward evolution

Type iii: Inferred evolution

Type iv: Observed evolution

Type iv: Observed evolution

Galaxy sample

Band	λ_{eff} [µm]	Observatory	Req.	UL $[\mu Jy]$
FUV	0.1539	GALEX	ext	-
NUV	0.2316	GALEX	ext	-
B	0.4389	CFHT12K	\det	-
R	0.6601	CFHT12K	\det	-
Ι	0.8133	CFHT12K	\det	-
K_S	2.14	WIRC	\det	-
IRAC 1	3.6	IRAC	\det	-
IRAC 2	4.5	IRAC	obs	1.2
IRAC 3	5.8	IRAC	obs	6.3
IRAC 4	8.0	IRAC	obs	6.9
MIPS 24	23.7	MIPS	obs	30

Total: 5986 galaxies

DEEP2 spectroscopic redshift: 4376 galaxies Photometric redshift with mean error less than 0.1: 1610 galaxies

Luminosity densities

Local EBL: Data and Models

Local EBL: Data and Models

Current uncertanties in the far-IR

EBL evolution with redshift

Improving the EBL modeling with galaxy surveys

Summary

1.- Direct detection, galaxy count data, and independent EBL modeling methodologies agree within a factor of around two, at least, in the optical and near-IR.

2.- Uncertainties are large in the far-IR, which is a fundamental area of research for the coming years.

3.- There are also uncertainties on the EBL evolution at higher redshift, z > 1, especially in the UV and far-IR.

4.- New results from infrared astronomy soon and stay tuned.. gamma-ray astronomy is helping in the EBL understanding!

Improving the EBL modeling with gamma-rays

Local EBL: Data, Models, and gamma-ray measurements

The Cosmic γ-ray Horizon

$$\left. \frac{dN}{dE} \right|_{obs} = \left. \frac{dN}{dE} \right|_{int} \exp\left[-\tau(E,z) \right]$$

The cosmic gamma-ray horizon (CGRH) is by definition the energy E0 as a function of redshift at which the optical depth due to EBL is unity.

The measurement of the CGRH is a primary scientific goal of the Fermi Gamma-Ray Telescope (Hartmann 07; Stecker 07; Kashlinsky & Band 07)

The Cosmic γ-ray Horizon: Results

The Cosmic γ-ray Horizon: Results

The Cosmic γ-ray Horizon: Results

The Hubble constant from gamma-rays

The Hubble Constant from Different Methodologies

Cosmological Parameters: Ω_m and w

