Search for Extended Gamma-ray Halos Around Active Galactic Nuclei with VERITAS

Elisa Pueschel
University College Dublin on behalf of the VERITAS Collaboration

SciNeGHE2014
4-6 June 2014

VERITAS

- Four 12m Imaging Atmospheric Cherenkov Telescopes located in southern Arizona
- Energy range: 100 GeV to $>30 \mathrm{TeV}$
- Energy resolution: 15% at 1 TeV
- Angular resolution: 0.1° at 1 TeV
- Field of view: 3.5°
- Peak effective area: 100,000 m²
- Point source sensitivity: 1% Crab in $<30 \mathrm{hr}$

VERITAS Science Program

47 detected sources (>5 $)$

Blazars	Galactic	Extragalactic non-Blazar	Unindentified Sources
26 detected	PWN	Starburst	
	Binary	FR1	
	SNR		
	Pulsar		

Plus Cosmic rays, Gamma-ray Burst follow up, extragalactic background light studies, Dark Matter, axions, Lorentz invariance...

Pair Halos Around AGN

Probe of extragalactic magnetic field strength (current lower limit $B>10^{-17} G$)
Previous results:
MAGIC using Mrk 421 \& Mrk 501
HESS using 1ES 1101-232, 1ES0229+200, PKS 2155-304
Fermi-LAT stacked analysis

Angular Profle for a Point Source

- Point source
- Angular profile $\rightarrow \theta^{2}$: angular distance between shower arrival direction and source's estimated location
- Background: flat in θ^{2}
- Signal: sharp peak at $\theta^{2}=0$
- Extended emission from halo could broaden angular profile
- Broad extended emission overlaid
 on point-source beamed emission

Predicted Halo Angular Profle

(Aharonian \& Eungwanichaypant, 2009)

- EGMF strength $\mathrm{B}=10^{-7}-10^{-12} \mathrm{G} \rightarrow$ halos
- Angular profile insensitive to exact strength
- Weaker field $\left(\mathrm{B}<10^{-14} \mathrm{G}\right) \rightarrow$ magnetically broadened cascade
- Predicted angular profile sensitive to
- Energy of Y from AGN
- Energy/spectral index of secondary Y
- Source redshift
- EBL model

Selected Sources

Ideal candidates based on theoretical predictions:

$$
\begin{gathered}
z=0.1-0.24 \\
\text { Hard spectrum } \\
\text { Detect emission above } 1 \mathrm{TeV}
\end{gathered}
$$

General selection criteria:
Strongly detected blazars (>10
Range of redshifts
Remove flare data (1ES1959, Mrk421)

	z	Γ	$\Phi(\mathrm{CU})$	σ	
Mrk 421	0.031	2.2	0.3	81.6	
Expect best model-dependent					
1ES 2344+514	0.044	2.95	0.11	9.6	
1ES 1959+650	0.048	-	0.64	14.4	
1ES 0229+200	0.14	2.5	0.018	11.1	
1ES 1218+304	0.182	-	0.08	37.8	
PG 1553+113	0.5	4.5	0.034	41.4	

VERITAS Pointing Monitor (VPM)

- Accurate pointing necessary for observation of extended emission
- VPM monitors telescope pointing for each observation
- Systematic uncertainty on pointing: $<50^{\prime \prime}$
- Much smaller than angular resolution

Simulation of Point Sources

- Compare angular distribution in data against that of a point source
- θ^{2} distribution depends on zenith, azimuth, source spectral index
- Derive θ^{2} distribution for each source from simulation
- Fit with hyperbolic secant
- Fit θ^{2} distribution in data with hyperbolical secant width fixed to $\sigma_{\text {SIM }}$

Fits with Widths Fixed to σ sIm

1ES 1959+650

1ES 0229+200

1ES 2344+514

1ES 1218+304

Mrk 421

PG 1553+113

Mrk 421 with Flare Data as Point Source

April 2013 flare data

Fit non-flare data with width fixed

Fit with Extended Emission Model

$$
\frac{d N}{d \theta} \propto \theta^{-k}
$$

$$
N\left(\theta^{2}\right)=N\left(\theta^{2}\right)_{P S}+N\left(\theta^{2}\right)_{E E}
$$

Predicted angular profile for pair halo
Beamed emission + Extended emission

Agreement between Data and Simulation

Preliminary Model-Independent Limits

excess $=\int_{001}^{0,12} \theta_{\text {sarerece }}-\int_{001}^{0.1 .2} \theta_{s \text { sta }}^{2}$

Upper limits on extended emission calculated using method of Helene 1983

	95% CL Upper Limit (\% Crab Flux)
Mrk 421	4.0%
1ES 2344+514	2.1%
1ES 1959+650	1.9%
1ES 0229+200	0.9%
1ES 1218+304	0.8%
PG 1553+113	0.8%

Conclusions

- Preliminary results on search for extended emission from pair halos
- Examined blazars with a range of redshifts
- Preliminary model-independent limits set
- Plan to set model-dependent limits
- Additional sources, analysis improvements on the way
- Long-term blazar plan includes continued monitoring of these sources

Acknowledgements

IRISH RESEARCH COUNCIL

An Chomhairle um Thaighde in Éirinn

Funding provided by Irish Research Council's
Government of Ireland Postdoctoral Research Fellowship

