A statistical approach to the study of blazar jet emission

Barbara Biasuzzi - Udine U.

Stefano Ansoldi, Michele Peresano – Udine U. Massimo Persic – INFN + INAF Trieste

CONTENTS

- Aim.
- Active Galactic Nuclei.
- Emission.
- Statistical Approach to Model Fitting.
- State of Art.
- Outlook.
- Conclusion.

AIM

Up to now blazars SED obtained by heuristic approach

\rightarrow NON RIGOROUS, BIASED

AIM

Provide statistical analysis to estimate most likely emission model parameters:

 \rightarrow Non-linear least-square minimization

 \rightarrow Goodness-of-fit test

ACTIVE GALACTIC NUCLEI

Morphology of an AGN

ACTIVE GALACTIC NUCLEI

Spectral Energy Distribution of AGNs

ACTIVE GALACTIC NUCLEI

Unified model of AGNs

EMISSION MODELS

LEPTONIC EMISSION MODELS

- Synchrotron Self Compton model (SSC):
 - One zone model
 - Two zone model
- External Compton model (EC):
 - External Compton from Clouds (ECC)
 - External Compton from Disk (ECD)

EMISSION MODELS

EMISSION MODELS

MODEL FITTING

NON LINEAR LEAST-SQAURE MINIMIZATION

$$\chi^{2}(\mathbf{p}) = \frac{1}{2} \sum_{i}^{1,N} \left[\frac{y_{i} - f(x_{i};\mathbf{p})}{\sigma_{i}} \right]^{2}$$

- **p** = SED model parameters
- (x_i, y_i) = observational data (freq, flux)
- $f(x_i, \mathbf{p}) = \text{SED}$ evaluation for observed frequencies
- σ_i = data uncertaintes

Mimimize χ^2 function \rightarrow Best values of parameters

The minimization process is performed numerically, finding a perturbation δp_j of the parameters p_j that gives a lower χ^2 value.

MODEL FITTING

LEVENBERG-MARQUARDT METHOD

1. STEEPEST DESCENT METHOD

 $\mathbf{grad}_{\mathbf{p}}\chi^{2}(\mathbf{p}) = -(\mathbf{y} - \mathbf{f})^{T}\Sigma\mathbf{J}$ $\mathbf{p} \rightarrow \mathbf{p} + \delta\mathbf{p}$ $\delta\mathbf{p} = \mu\mathbf{J}^{T}(\mathbf{y} - \mathbf{f})$

2. INVERSE HEISSIAN METHOD

$$grad_{p}\chi^{2}(\mathbf{p}) = -(\mathbf{y} - \mathbf{f})^{T}\Sigma\mathbf{J}$$
$$\mathbf{p} \rightarrow \mathbf{p} + \delta\mathbf{p}$$
$$\delta\mathbf{p} = \mathbf{H}^{-1}\mathbf{J}^{T}(\mathbf{y} - \mathbf{f})$$

Combination of 2 methods:

$$\mathbf{p} \rightarrow \mathbf{p} + \delta \mathbf{p}$$
$$\delta \mathbf{p} = (\mathbf{H} + \lambda \mathbf{I}) \mathbf{J}^T \Sigma (\mathbf{y} - \mathbf{f})$$

STATE OF ART

Mkn 421 data sets

- 9 data sets corresponding to different emission states.
- Simultaneous data from multi-frequency campaign (optical-Very High Energy).

STATE	DATE	ENERGY BAND	INSTRUMENTS	SOURCE ACTIVITY
1	April 2006	Otical/UV/X-rays VHE	XMM, EPIC detector Whipple	Flare decay
2	April 2006	Otical/UV/X-rays VHE	XMM, EPIC detector Whipple	Flare decay
3	Dec2002 - Jan2003	Optical X-rays VHE	Boltwood, KVA, WIYN RXTE Whipple, HEGRA-CT1	Flaring state
4	March-May 2003	Optical X-rays VHE	Whipple, Boltwood RXTE Whipple	Medium state

STATE	DATE	ENERGY BAND	INSTRUMENTS	SOURCE ACTIVITY
5	March 2001	Optical X-rays VHE	Hopkins, Harvard- Smithsonian telescope RXTE Whipple	Post flare state
6	May 2008	Otical/X-rays VHE	XMM, EPIC detector VERITAS	Flare decay
7	March 2001	Optical X-rays VHE	RXTE Whipple	Flaring state
8	June 2008	Optical X-rays VHE	WEBT RXTE, Swift/BAT VERITAS	
9	April 2004	Optical X-rays VHE	Whipple, Boltwood RXTE Whipple	High state

(Mankuzhiyil et al. 2011)

Mkn 421 1-zone SSC parameters

Source	В	R	δ	χ^2_{ν}
	(G)	(cm)		
State 1	$(9 \pm 3) \times 10^{-1}$	$(9\pm4)\times10^{14}$	$(2\pm0.5) imes10^1$	0.84
State 2	$(8 \pm 6) \times 10^{-1}$	$(8 \pm 4) \times 10^{14}$	$(2.7 \pm 1.1) \times 10^{1}$	1.86
State 3	$(6 \pm 6) \times 10^{-2}$	$(2.0 \pm 1.5) \times 10^{15}$	$(1.0 \pm 0.5) \times 10^2$	0.91
State 4	$(1.21 \pm 0.16) \times 10^{-1}$	$(1.1 \pm 1.3) \times 10^{15}$	$(8 \pm 6) \times 10^{1}$	0.89
State 5	$(1.9 \pm 1.3) \times 10^{-1}$	$(10 \pm 4) \times 10^{14}$	$(7 \pm 5) \times 10^{1}$	0.67
State 6	1.0 ± 0.7	$(6 \pm 3) \times 10^{14}$	$(2.8 \pm 1.1) \times 10^{1}$	1.39
State 7	$(4 \pm 3) \times 10^{-2}$	$(2 \pm 5) \times 10^{15}$	$(8 \pm 7) \times 10^{1}$	1.61
State 8	$(6 \pm 3) \times 10^{-2}$	$(2 \pm 1.8) \times 10^{15}$	$(1.1 \pm 0.4) \times 10^2$	0.60
State 9	$(4\pm3) imes10^{-2}$	$(2\pm4)\times10^{15}$	$(1.2 \pm 1.0) \times 10^2$	0.85

Mkn 421 1-zone SSC parameters

Source	В	R	δ	χ^2_{ν}
	(G)	(cm)		
State 1	$(9 \pm 3) \times 10^{-1}$	$(9\pm4)\times10^{14}$	$(2\pm0.5) imes10^1$	0.84
State 2	$(8 \pm 6) \times 10^{-1}$	$(8 \pm 4) \times 10^{14}$	$(2.7 \pm 1.1) \times 10^{1}$	1.86
State 3	$(6 \pm 6) \times 10^{-2}$	$(2.0 \pm 1.5) \times 10^{15}$	$(1.0 \pm 0.5) \times 10^2$	0.91
State 4	$(1.21 \pm 0.16) \times 10^{-1}$	$(1.1 \pm 1.3) \times 10^{15}$	$(8 \pm 6) \times 10^{1}$	0.89
State 5	$(1.9 \pm 1.3) \times 10^{-1}$	$(10 \pm 4) \times 10^{14}$	$(7 \pm 5) \times 10^{1}$	0.67
State 6	1.0 ± 0.7	$(6 \pm 3) \times 10^{14}$	$(2.8 \pm 1.1) \times 10^{1}$	1.39
State 7	$(4 \pm 3) \times 10^{-2}$	$(2 \pm 5) \times 10^{15}$	$(8 \pm 7) \times 10^{1}$	1.61
State 8	$(6 \pm 3) \times 10^{-2}$	$(2 \pm 1.8) \times 10^{15}$	$(1.1 \pm 0.4) \times 10^2$	0.60
State 9	$(4 \pm 3) \times 10^{-2}$	$(2 \pm 4) \times 10^{15}$	$(1.2 \pm 1.0) \times 10^2$	0.85

Mkn 421 1-zone SSC parameters

		·		
Source		Source	$n_{\rm e}$	$\gamma_{ m br}$
State 1			(cm)	
State 2		State 1	$(1.3 \pm 1.5) \times 10^3$	$(2.6 \pm 0.9) \times 10^4$
State 2 State 2		State 2	$(1 \pm 3) \times 10^3$	$(2.4 \pm 0.9) \times 10^4$
State 5	(1.01	State 3	$(5 \pm 5) \times 10^3$	$(7 \pm 3) \times 10^4$
State 4	(1.21	State 4	$(2 \pm 5) \times 10^3$	$(4 \pm 2) \times 10^4$
State 5	(1.9	State 5	$(2+5) \times 10^3$	$(4.5 \pm 1.9) \times 10^4$
State 6		State 6	$(2 \pm 2) \times 10^{3}$	$(10 \pm 0.6) \times 10^{4}$
State 7		State 0	$(4 \pm 4) \times 10^{3}$	$(1.9 \pm 0.0) \times 10^{-104}$
State 8		State 7	$(1 \pm 7) \times 10^{3}$	$(8 \pm 6) \times 10^{4}$
State Q		State 8	$(4 \pm 9) \times 10^{1}$	$(5 \pm 2) \times 10^4$
		State 9	$(1 \pm 7) \times 10^2$	$(8 \pm 9) \times 10^4$

(Mankuzhiyil et al. 2011)

Mkn 421 1-zone SSC parameters

Source		Source	$n_{\rm e}$ (cm ⁻³)	$\gamma_{ m br}$
State 1 State 2 State 3 State 3 State 4 State 5 State 5 State 6 State 7 State 8	(1.21 (1.9	State 1 State 2 State 3 State 3 State 4 State 5 State 5 State 6 State 7 State 8	$(1.3 \pm 1.5) \times 10^{3}$ $(1 \pm 3) \times 10^{3}$ $(5 \pm 5) \times 10^{3}$ $(2 \pm 5) \times 10^{3}$ $(2 \pm 5) \times 10^{3}$ $(4 \pm 4) \times 10^{3}$ $(1 \pm 7) \times 10^{3}$ $(4 \pm 9) \times 10^{1}$	$\begin{array}{c} (2.6\pm0.9)\times10^{4}\\ (2.4\pm0.9)\times10^{4}\\ (7\pm3)\times10^{4}\\ (4\pm2)\times10^{4}\\ (4.5\pm1.9)\times10^{4}\\ (1.9\pm0.6)\times10^{4}\\ (8\pm6)\times10^{4}\\ (5\pm2)\times10^{4} \end{array}$
State 9		State 9	$(1 \pm 7) \times 10^2$	$(8 \pm 9) \times 10^4$

(Mankuzhiyil et al. 2011)

PROBLEM 1: LARGE PARAMETERS UNCERTAINTES

→ minimum shape approximated by a quadratic function: no good approximation

PROBLEM 2:

KOLMOGOROV-SMIRNOV TEST FAILS AT 5% SIGNIFICANCE LEVEL

- → two distinct physical processes that manifest themselves at very different energies
- → The uncertaintes associated with the VHE data are much larger than those associated with optical and X-rays ones.

STATE OF ART

Mkn 501 data sets

- 8 data sets corresponding to different emission states.
- Simultaneous data from multi-frequency campaign (optical-Very High Energy).

STATE	DATE	ENERGY BAND	INSTRUMENTS	SOURCE ACTIVITY
1	Mar 2009	X-rays HE VHE	Suzaku Fermi LAT MAGIC, VERITAS	Quiescent state
2	Mar – Apr 2009	X-rays HE VHE	Swift, RXTE Fermi LAT MAGIC, VERITAS	Quiescent state
3	Jun 2006	Optical X-rays VHE	KVA Suzaku MAGIC	Quiescent state
4	Jun 1998	X-rays VHE	RXTE HEGRA	

STATE	DATE	ENERGY BAND	INSTRUMENTS	SOURCE ACTIVITY
5	Jun 1998	X-rays VHE	RXTE HEGRA	High state
6	Apr 1997	X-rays VHE	Beppo Sax CAT	Low state
7	Apr 1997	X-rays VHE	Beppo Sax CAT	Medium state
8	Apr 1997	X-rays VHE	Beppo Sax CAT	Giant flaring state

Mkn 421 1-zone SSC best-fit SEDs

(Mankuzhiyil et al. 2012)

	State 1	State 2	State 2	State 4
	State 1	State 2	State 3	State 4
Date	2009 Mar	2009 Mar-Aug	2006 Jul	1998 Jun 15-26
Instr.		Swift	KVA	
	Suzaku	RXTE	Suzaku	RXTE
	Fermi/LAT	Fermi/LAT		
	MAGIC	MAGIC	MAGIC	HEGRA
	VERITAS	VERITAS		
Ref.	[1]	[2]	[3]	[4]
Param.				
K _e	68.9 ^{0.2}	234_2^2	253.8 ^{1.7}	152.8 ^{1.1}
γmin	1	1	1	1
Ybr	8.024 ^{0.012} _{0.012}	$4.88_{0.03}^{0.03}$	$5.60_{0.02}^{0.02}$	$2.67_{0.02}^{0.02}$
$\gamma_{\rm max}$	$1.86_{0.03}^{0.04}$	$2.12_{0.05}^{0.06}$	$1.61_{0.15}^{0.2}$	$2.67_{0.07}^{0.08}$
n_1	$1.727_{0.000}^{0.000}$	$1.792_{0.000}^{0.000}$	$1.779_{0.000}^{0.000}$	$1.734_{0.000}^{0.000}$
n_2	3.376 ^{0.002} _{0.002}	3.156 ^{0.003}	3.610 ^{0.004}	$3.048_{0.002}^{0.002}$
В	$2.098_{0.002}^{0.002}$	$1.530_{0.006}^{0.006}$	5.58 ^{0.02}	1.513 ^{0.005} _{0.005}
R	$2.332_{0.002}^{0.002}$	$1.909_{0.006}^{0.006}$	$1.620_{0.004}^{0.004}$	$1.985_{0.005}^{0.005}$
δ	$19.128_{0.010}^{0.011}$	$24.40_{0.05}^{0.05}$	$15.12_{0.02}^{0.02}$	$25.24_{0.05}^{0.05}$
log L	44.57	44.58	44.59	44.54
$\log v_s$	16.74	16.86	16.34	17.16
$\log v_{\rm IC}$	25.36	25.46	24.88	25.34
$\frac{\delta}{\log L}$ $\log v_{\rm s}$ $\log v_{\rm IC}$	$2.332_{0.002}^{0.002}$ $19.128_{0.010}^{0.011}$ 44.57 16.74 25.36	$ \begin{array}{r} 1.909_{0.006}^{0.006} \\ 24.40_{0.05}^{0.05} \\ 44.58 \\ 16.86 \\ 25.46 \\ \end{array} $	$ \begin{array}{r} 1.620_{0.004}^{0.004} \\ 15.12_{0.02}^{0.02} \\ 44.59 \\ 16.34 \\ 24.88 \\ \end{array} $	1.9850 25.24 44.5 17.1 25.3

STATE OF

ART

(...Mkn501)

(Mankuzhiyil et al. 2012)

	State 5	State 6	State 7	State 8
Date	1998 Jun 27–28	1997 Apr 7	1997 Apr 11	1997 Apr 16
Instr.	RXTE	BeppoSAX	BeppoSAX	BeppoSAX
	HEGRA	CAT	CAT	CAT
Ref.	[4]	[5]	[5]	[5]
Param.				
Ke	456 ₄	93.6 ^{0.8}	$165.4_{1.3}^{1.5}$	4654
γmin	1	1	1	1
γbr	$1.03_{0.02}^{0.02}$	$26.7_{0.2}^{0.2}$	$30.6_{0.3}^{0.3}$	55_2^2
$\gamma_{\rm max}$	$3.62_{0.06}^{0.06}$	13 ⁵⁰⁰	13 ¹³	$8.8_{0.3}^{0.4}$
n_1	$1.642_{0.000}^{0.000}$	$1.652_{0.000}^{0.000}$	$1.697_{0.000}^{0.000}$	$1.728_{0.000}^{0.000}$
n_2	$2.245_{0.002}^{0.002}$	$2.997_{0.011}^{0.011}$	$2.795_{0.009}^{0.008}$	$2.110_{0.011}^{0.010}$
В	$1.126_{0.006}^{0.006}$	$3.60_{0.02}^{0.02}$	$1.799_{0.008}^{0.009}$	$1.043_{0.005}^{0.006}$
R	$1.742_{0.006}^{0.006}$	$0.925_{0.003}^{0.003}$	$1.202_{0.003}^{0.004}$	$1.627_{0.004}^{0.004}$
δ	$12.85_{0.03}^{0.03}$	$16.43_{0.04}^{0.04}$	$17.53_{0.04}^{0.04}$	$13.89_{0.03}^{0.03}$
log L	44.91	44.95	45.07	45.53
$\log \nu_{\rm s}$	18.39	19.30	19.51	19.27
log v _{IC}	26.35	26.17	26.53	26.93

STATE OF ART (...Mkn501)

(Mankuzhiyil et al. 2012)

PROBLEM: KOLMOGOROV-SMIRNOV TEST FAILS AT 5% SIGNIFICANCE LEVEL

- → two distinct physical processes that manifest themselves at very different energies
- → The uncertaintes associated with the VHE data are much larger than those associated with optical and X-rays ones.

OUTLOOK

TO OPTIMIZE THE CODE

in order to reduce the computational time and to better estimate the model parameters and their uncertainties \rightarrow i.e. better estimate of the derivative

TO IMPLEMENT DIFFERENT MODELS such as the 2-zone SSC and SSC+EC for different electrons' spectrum in order to efficiently rule out some models for a given source.

TO CARRY OUT A STATISTICAL STUDY ON ALL BLAZARS in order to better understand the emission region properties once the bias related to different analyses is removed.

CONCLUSIONS

- Henceforth the availability of simultaneous, multi-frequency data allows to obtain, by a rigorous statistical approach, the confidence levels for the model parameters.
- Model parameters are obtained through a non-linear leastsquare minimization, using the Levenberg-Marquardt method and applying the Kolmogorov-Smirnov test as a goodness of fit test.
- Mkn421 and Mkn501 SED error bars are obtained, for the first time, by a standard covariance matrix approach. The results, although preliminary, show a clear statistical meaning.
- For a given source, this new approach will allow to quantify if a specific model is more suitable than others, and eventually to improve it.

THANKS !!!