Gravitational waves and high-energy photons: the multimessenger connection

Massimiliano Razzano⁽¹⁾

With many thanks to Marica Branchesi⁽²⁾ & Francesco Fidecaro⁽¹⁾ ⁽¹⁾University of Pisa & INFN ⁽²⁾University of Urbino & INFN

On behalf of the LIGO Scientific Collaboration and Virgo Collaboration

10th SciNeGHE – Lisbon 4-6 June 2014

A multi-messenger sky

Optical (APOD)

Gamma rays > 0.1 GeV (Fermi-LAT, 2013)

Cosmic rays > 57 Eev (Auger, 2007)

Neutrinos > 30 Tev (Icecube, 2013)

LIGO and Virgo currently under upgrade They will observe the sky (10-1000 Hz) as a single network aiming at the first direct detection of GWs

Expected GW sources detectable by LIGO/Virgo

Core-collapse of Massive Stars

Coalescence of Compact Objects Neutron-Stars and/or Black-Holes

Examples of GW science from previous LIGO/Virgo runs (2005-2010)

((0))/

Upper limits on the rate of low mass compact binary coalescence total mass 2-25 M_{sun}

Abadie et al. 2012, Phys. Rev. D, 85

GW amplitude upper limits from 195 known Pulsars

Crab limit at 1% of total energy loss! **Vela limit** at 10% of total energy loss!

Aasi et al. 2014, ApJ, 785

Advanced era **Detection rates of compact binary coalescences** High Source Low Max Real yr-1 yr⁻¹ **vr**⁻¹ vr⁻¹ 1000 NS-NS 0.4 40 400 NS-BH 0.2300 10Advanced BH-BH 0.4201000

(Abadie et al. 2010, CQG 27)

5

- Complementary information:
 GW → mass distribution
 EM → emission processes, environment
- Give a precise (arcmin/arcsecond) localization
 Localize host galaxy of a merger
 Identify an EM counterpart with timing signature (e.g. pulsars)
- Provide a more complete insight into the most energetic events in the Universe
- Explore the physics of the progenitors (mass, spin, distance..) and their environment (temperature, density, redshift..)
- Open a new era of multi-messenger (GW and photon) astronomy

LIGO

Transient sources: Gamma Ray Bursts

Merger of NS-NS / NS-BH

Core collapse of massive star

Gamma-Ray Burst: flashes of gamma-rays isotropic-equivalent energy up to 10⁵³ erg

Short Hard GRB

Progenitor indications:

- lack of observed SN
- association with older stellar population
- larger distance from the host galaxy center (~ 5-10 kpc)

Long Soft GRB Progenitor strong evidence: observed Type Ic SN spectrum

Kilonovae

(Optical/IR, radio remnant)

GRBs emission - Fireball Model

EM signals from GRBs

GRB observations: the case of Fermi

- *Fermi's* Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) excellent for GRBs
 - Large FoV & sensitivity
 - Huge energy coverage (7 decades)
 - Precise timing (~1 us)

- GW \rightarrow EM
 - Confirm GRB
 - Better constrain time & localization
- EM \rightarrow GW
 - Provide GW candidate for search

Characteristic	Capability	
Low Energy Limit	<10 keV	
High Energy Limit	>25 MeV	
Energy Resolution (FWHM, 0.1-1 MeV)	<10%	
Field of View (Co-aligned with LAT FOV)	>8 sr	
Time Accuracy (Relative to spacecraft time)	<10 microseconds	
Average Dead Time	<10 microsecond/count	
Burst Sensitivity (Peak 50-300 keV flux for 5σ detection in ph cm ⁻² s ⁻¹)	<0.5 cm ⁻² s ⁻¹	
Burst Alert Locations (10 systematic error radius)	<15°	
Burst Alert Time Delay (Time from burst trigger to spacecraft notification (used to notify ground or LAT)	<2 s	

References:

LAT:

http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm

GBM: http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Introduction/GBM_overview.html

GBM performance

GRBs in the Fermi era

- First LAT GRB Catalog (Ackermann+13, ApJS)
- 35 GRBs detected by the LAT (28 >100 MeV)
- 5 of them are short GRBs (T_{90,GBM} < 2 s)
- 733 detected by the GBM

Main results:

- Spectra:
 - Deviation from Band function at low E
 - Additional power law at high-E
 - High-E photons by the LAT (e.g. 95 GeV from GRB130427A)
 - High-E cutoff
- Temporally-extended high-E emission
- LAT GRBs among the brightest ones

See also: GBM 2-yr catalog (Goldstein +12, ApJS)

 \mathbf{R}_{NS-NS}

8 -1100 Gpc⁻³yr⁻¹	(Coward et al. 2012)
92–1154 Gpc ⁻³ yr ⁻¹	(Siellez et al. 2013)

Theoretical prediction **10-10000** Gpc⁻³ yr⁻¹ (Abadie et al. 2010)

Triggered analysis (EM observations → GW analysis)

GRB prompt emission → TRIGGERED GW SEARCH

Known GRB event time and sky position:

→ reduction in search parameter space
→ gain in search sensitivity

GW transient searches

Analyzed 154 GRBs detected by gamma-ray satellites during 2009-2010 while 2 or 3 LIGO/Virgo detectors were taken good data No evidence for gravitational-wave counterparts Abadie et al. 2012, ApJ, 760

GRB prompt emission - TRIGGERED SEARCH

Non GW-detection result: lower bounds on the progenitor distance

Abadie et al. 2012, ApJ, 760

Electromagnetic follow-up (GW → prompt EM observations)

ĺij

EM-follow up challenges:

Fast faint transient counterparts

★ Large GW error box → difficult to be covered → many transient contaminants

* Larger Universe observed by LIGO/Virgo

EM-follow up key points:

How to set up an optimal observational strategy? to image the whole GW error box or the most propable galaxy hosts?

***** How to uniquely identify the EM counterpart?

TIGHT LINK is required between GW/EM/Theoretical COMMUNITIES!!

Sky Localization of GW transients

2009-2010 first EM follow-up of candidate GW events Low-latency GW data analysis pipelines enabled us to: 1) identify GW candidates in "real time" and 2) obtain prompt EM observations

GW triggers

Sky Pointing

Position

Event validation

EM facilities

"Search Algorithms" to identify the GW-triggers:

Unmodeled Burst Search

 Matched Filter Search for Compact Binary Coalescence **"Software"** to identify GWtrigger for the EM follow-up:

- select statistically significant triggers wrt background
- determine telescope pointing

Abadie et al. 2012, A&A 539 Abadie et al. 2012, A&A 541 Evans et al. 2012, ApJS 203 Aasi et al. 2014, ApJS, 211

Ground-based and space EM facilities involved in 2009-2010 follow-up program

Optical Telescopes

(FOV, limiting magnitude) **TAROT SOUTH/NORTH**

3.4 deg², **17.5** mag

Zadko **0.17** deg², **20.5** mag

ROTSE

3.4 deg² , 17.5 mag QUEST

9.4 deg², **20.5** mag

SkyMapper

5.7 deg², 21 mag **Pi of the Sky 400** deg², **11.5** mag

Palomar Transient Factory 7.8 deg², **20.5** mag **Liverpool telescope** 21 arcmin², 21 mag

X-ray and UV/Optical Telescope

Swift Satellite XRT-FOV 0.16 deg² Flux **10**⁻¹³ ergs/cm²/s

Radio Interferometer

LOFAR 30 - 80 MHz 110 - 240 MHz

Maximum **25** deg²

Monday, September 9, 13

Courtesy of V. Connaughton of GBM team (presented @ Chicago Meeting Sept. 13)

((((O)))VIRGO LIGO-Virgo EM-follow up plan LSC)

Agreed LVC Policy for releasing GW triggers (dcc.ligo.org/M1200055, VIR-0173A-12)

"Until first four GW events have been published, triggers will be shared promptly only with astronomy partners who have signed an MoU with LVC "

Opened call to sign MoU for the identification of EM counterparts to GW triggers found in the next science runs of aLIGO/Virgo, which will start in 2015 Deadline 16 Feb, 2014

 More than
 sixty MoU applications
 from 19 countries
 about 150 instruments
 covering the full spectrum from radio to
 very high-energy gamma-rays!

Advanced GW Detectors: Observing scenario

LSC & Virgo Collaborations, arXiv:1304.0670

Progression of sensitivity and range for Binary Neutron Stars

Larger GW-detectable Universe

Sky Localization of Gravitational-Wave Transients

Position uncertainties with areas of **tens to hundreds of sq. degrees**

 \bigcirc → 90% confidence localization areas X → signal not confidently detected

Example of skymaps for the first two years of operation, 2015 through 2016

Median 90% CR of: about **500 deg²** in 2015 about **200 deg²** in 2016

Singer et al. arXiv:1404.5623 <u>http://www.ligo.org/science/first2years</u>

A plausible scenario

L aı

SC & Virgo collaboration rXiv:1304.0670		aLIGO/Virgo Range				Rate	Localization	
Estimated		$E_{\rm GW} = 10^{-2} M_{\odot} c^2$				Number	% BNS	Localized
	RunBurst Range (Mpc)BNS Range (Mpc)		Burst Range (Mpc)		ge~(Mpc)	of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5{ m deg}^2$	$20\mathrm{deg}^2$
2015	3 months	40 - 60	_	40 - 80	_	0.0004 - 3	_	_
2016-17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017-18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 – 2	10 - 12
2019+	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 - 8	8 - 28
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48

The pulsar connection

- Quadrupole momentum from oblate neutron stars
- Periodic continuous GW signal
- Complementary information
 - GWs from neutron star
 - Gamma rays from magnetosphere
- EM →GW
 - Many Fermi pulsars are young, energetic, and relatively nearby, i.e. good GW candidates
 - Fermi continuously monitors pulsars, providing timing solutions
 - Fermi is the only instrument capable of timing radio-quiet pulsars

...and a lot of unidentified sources

Credit: Fermi Large Area Telescope Collaboration

Many GW/gamma rays connections

- GW and photons provide complementary information
 - Multimessenger observations extremely promising
- Multimessenger approach is key to study the most extreme objects in the Universe
 - Natural laboratories to probe fundamental physics
 - Transients (e.g. GRBs)
 - Neutron stars
 - Unidentified sources?
- Virgo and LIGO are undergoing major upgrades
 - Increased sensitivity \rightarrow Larger volumes to probe
 - Joint observations planned for 2016
- Good availability of instruments
 - Many optical/radio telescopes in EM-followup program
 - From space, Swift & Fermi mission extended (Senior Review 2014)

A new, big community is growing, to be ready for the challenges of the multimessenger era !

Optical telescope 8 GW alerts

Aasi et al. 2014, ApJS, 211

GW/EM transient data analysis results:

Off-line analysis of the GW data alone GW candidates show no evidence of an astrophysical origin

> EM transients detected in the images consistent with the EM background

GWs & pulsar glitches

- Burst-like signal from pulsar glitches
- Loss of coherence
- GW Upper limits for some pulsars (e.g. Vela)
- Complementary information
 - GWs from neutron star
 - Gamma rays from magnetosphere

- Fermi continuously monitors the sky, detects glitches "on the fly"
- Extract glitch parameters from gamma-ray data, crucial for addressing GW searches
- Unique instrument for radio-quiet pulsars

GRB prompt emission - TRIGGERED SEARCH

Population exclusion on cumulative redshift distribution

Results 2009-2010 & prospects for Advanced LIGO/Virgo

Abadie et al. 2012, ApJ, 760

 \rightarrow Detection is quite possible in the advanced detector era

 \rightarrow No detection will place relevant constraints on GRB population models