Cosmic Rays & Gamma Rays

via extensive air shower measurements

- CR experiments & CR physics (KASCADE-Grande)
- CR experiments & γ-ray physics
- γ-ray experiments & CR physics
- Synergies & Multi-messenger

Andreas Haungs KIT, Germany

SciNeGHE 2014

3

Acceleration of cosmic rays in supernova remnants

Propagation through galaxy (B≈3μG?)

Galactic cosmic rays: standard picture

Cosmic Ray Experiments & Cosmic Ray Physics

- KASCADE
- ARGO
- KASCADE-Grande
- Tunka-133
- IceTop
- Future: LHAASO, Auger Enhancements, TALE, GRAPES
- Not discussing: Highest energy cosmic rays (Pierre Auger Observatory, Telescope Array, Yakutsk, JEM-EUSO, ...)

KASCADE

KArlsruhe Shower Core and Array DEtector

• Since 1995

Large number of observables: electrons, muons@4 thresholds, hadrons

T.Antoni et al. NIM A513 (2003) 490

Andreas Haungs

7

Andreas Haungs

SciNeGHE 2014

KASCADE : energy spectra of single mass groups

Searched: E and A of the Cosmic Ray Particles Given: N_e and N_{μ} for each single event \rightarrow solve the inverse problem

 $\frac{dJ}{d \lg N_e \ d \lg N_{\mu}^{tr}} = \sum_{A} \int_{-\infty}^{+\infty} \frac{dJ_A}{d \lg E} \left(p_A(\lg N_e, \lg N_{\mu}^{tr} | \lg E) \ d \lg E \right)$

- kernel function obtained by Monte Carlo simulations (CORSIKA)
- contains: shower fluctuations, efficiencies, reconstruction resolution

KASCADE collaboration, Astroparticle Physics 24 (2005) 1-25

8

5.5

Ig N^{tr}

KASCADE results

- same unfolding but based on different hadronic interaction models embedded in CORSIKA

- all-particle spectrum similar
- general structure similar: knee by light component
- relative abundances very different for different high-energy hadronic interaction models

KASCADE collaboration, Astrop.Phys. 24 (2005) 1 , Astrop.Phys. 31 (2009) 86

SciNeGHE 2014

observation of a "light" knee at 2-4-10¹⁵ eV

The proton spectrum

- a bit outdated....needs update (new experiments, new hadronic models)

ARGO – YBJ in Tibet

- dense array at high altitude
- Gamma-ray experiment with high sensitivity to low energy EAS
- new: hybrid measurements with a LHAASO prototype WFCTA

ARGO – YBJ in Tibet spectrum of light primaries

Comparison with direct measurements and with Tibet ASgamma (SYBILL)

G. Di Scascio, 5th High Altitude workshop, Paris, May 2014

- new: light spectrum (p+He) below the all-particle knee
- different analysis methods applied
- further structures in the individual mass group (proton) spectra? or contradiction to KASCADE?

Future CR experiments in the low energy EAS range: **GRAPES** in India LHAASO in China &

H. Tanaka et al. J. Phys. G: Nucl. Part. Phys. 39 (2012) 025201

13

Andreas Haungs

KASCADE-Grande

multi-parameter EAS measurements

KASCADE-Grande: the measurement

determination of primary energy
 separation in "electron-rich" and "electron-poor" event

15

SciNeGHE 2014

All-particle energy spectrum :

$log_{10}(E) = [a_{p} + (a_{Fe} - a_{p}) \cdot k] \cdot log_{10}(N_{ch}) + b_{p} + (b_{Fe} - b_{p}) \cdot k$

 $k = (\log_{10}(N_{ch}/N_{\mu}) - \log_{10}(N_{ch}/N_{\mu})_{p}) / (\log_{10}(N_{ch}/N_{\mu})_{Fe} - \log_{10}(N_{ch}/N_{\mu})_{p})$

QGSJET II hadronic interaction model

-different zenith angle bins -no composition dependence

Astroparticle Physics 36 (2012) 183

KASCADE-Grande: Spectra of individual mass groups $k = (log_{10}(N_{ch}/N_{u}) - log10(N_{ch}/N_{u})_{p}) / (log10(N_{ch}/N_{u})_{Fe} - log10(N_{ch}/N_{u})_{p})$

Andreas Haungs

observation of a "heavy" knee at 8-9-10¹⁶ eV

SciNeGHE 2014

- spectra of individual mass groups:
- → steepening close to 10¹⁷eV (2.1σ) in all-particle spectrum
- Steepening due to heavy primaries (3.5σ)

→ spectrum of more enhanced heavy sample has harder spectrum before break.

 → light+medium primaries show steeper spectrum, but fit by power law okay
 → possibility for hardening above 10¹⁷eV

KASCADE-Grande: spectrum of light primaries

- re-investigation of the spectrum of light primaries:

- → increased area (higher threshold)
- → 1 year more data

SciNeGHE 2014

➔ improved selection cut

Phys.Rev.D (R) 87 (2013) 081101

→ hardening at 10^{17.08} eV (5.8σ) in light spectrum

→ slope change from γ = -3.25 to γ = -2.79!

observation of a "light" ankle at 1-2-10¹⁷ eV

18

18.2

KASCADE-Grande : energy spectra of mass groups

• steepening due to heavy primaries (3.5σ)

hardening at 10^{17.08} eV
(5.8σ) in light spectrum

Phys.Rev.Lett. 107 (2011) 171104 Phys.Rev.D (R) 87 (2013) 081101

Validity of Hadronic Interaction Models

KASCADE-Grande: model dependence

Structures of all-particle, heavy and light spectra similar
 knee by light component and heavy component; ankle by light component

- relative abundances different for different high-energy hadronic interaction models

Advances in Space Research 53 (2014) 1456

Tunka-133

ІсеТор

Phys Rev D 88 (2013) 042004

- Energy range: PeV 1EeV
- Area: 1 km²
- 2835m altitude (680 g/cm²)
- 81 ice cherenkov stations
- LDF + particle density at 125m
- in-ice high-energy muons

SciNeGHE 2014

Andreas Haungs

Andreas Haungs

Light and Heavy Knees, Ankles, and Transition

Cosmic Ray Experiments & Gamma-ray Physics

- KASCADE
- Moscow State University array (MSU)
- ARGO
- Future: GRAPES, Tunka-133, IceTop, Auger Enhancements, TALE
- Not discussing:

- Search for highest energy Photons = GZK-photons (Pierre Auger Observatory, Telescope Array, Yakutsk, JEM-EUSO, ...)

- Results of EAS-γ-ray Experiments in Gamma-Ray Physics (ARGO, Tibet-ASγ, Milagro, HAWC, LHAASO, HiScore, IACTs, CTA,)

Gamma ray search at KASCADE

KASCADE collaboration, Zhaoyang Feng, Donghwa Kang, in preparation

- Data set from 1998.05.11 to 2010.05.14 ; 3 • 10⁸ events

- -selection of muon poor events (88170 events)
- -Gamma energy: >168 TeV
- -Background estimation (equi-distant zenith angles) Anemonori et al.
- -Significance estimation (Li-Ma and Poisson significances)
- -Diffuse flux limit calculated for different energies (Helene 1983)
- -Upper point source limits calculated

Muonless events

Muon poor events

29

Andreas Haungs

SciNeGHE 2014

Search for primary photons (diffuse Gamma-ray flux):

Primary photons: point directly to the source of cosmic rays air-showers are muon-poor, i.e. small ratio of muon to electron number

no positive signal observed best limits for the diffuse flux

KASCADE collaboration, F.Feßler, ICRC 2003

MSU array: Moscow State University experiment

Distribution of muonless events

-Re-analysis of old data -Claim to have positive signal -Gamma energy: close to 100 PeV -KASCADE-Grande is checking

arXiv:1307.4988v1

Gamma-Ray Experiments & Cosmic Ray Physics

IACT experiment

(H.E.S.S. iron spectrum)

Anisotropies

(Milagro, HAWC, Tibet, IceTop, ARGO)

- Low energy cosmic ray spectra (GRAPES, ARGO, Tibet)
- Future: LHAASO, HiSCORE, GRAPES, CTA, HAWC

IACT (HESS)

- Can we measure the Cosmic Ray Iron spectrum with HESS?
- Direct Cherenkov light: $I_{
 m DC} \propto Z^2$

Technique: Keida, Swordy, Wakely. (2002)

DC-light from Cosmic Rays

33

SciNeGHE 2014

IACT (HESS)

Slides Stolen from talk by Kosack VERITAS presently looking into data

Andreas Haungs

Analysis of large scale anisotropy of cosmic rays:

Anisotropy: different astrophysical models for the origin of the knee can be distinguished by their predictions of anisotropy

KASCADE collaboration Astrophysical Journal 604 (2004) 687 (above PeV) limits in Rayleigh amplitude

SciNeGHE 2014

Large scale Anisotropies observed (below PeV)

Light and Heavy Knees, Ankles, and Transition Summary (KASCADE-Grande)

- → KASCADE: knee of light primaries at ~3-10¹⁵eV
- → Hardening at 10¹⁶eV due to knee of medium component
- → KASCADE-Grande: knee of heavy primaries at ~9.10¹⁶ eV
- ➔ heavy knee less distinct compared to light knee
- → mixed composition for 10^{15} to ~ 8.10¹⁷ eV
- → light ankle at 1-2.10¹⁷ eV

knee position « I

Light and Heavy Knees, Ankles, and Transition

Questions:

- which astrophysical scenario (model) describes the data?
- exact energy and mass scale?
- spectral shape of individual masses?

V.Berezinsky, astro-ph/0403477

D.Allard, astro-ph/1111.3290

Synergy with Gamma-ray astronomy

- Do shell-type SNR accelerate protons? (via π^0 -decay!)
- To which energy? (up to 10¹⁵eV?)
- Distinguishable from electron acceleration?

Expected gamma flux $(\pi^0 - bump)$ for different proton injections

- Fermi-Lat

- TeV γ-ray Cherenkov

Gamma-ray astronomy: Fermi

- IC 443 and W44 are the two brightest SNRs in the Fermi-LAT range

Measured gamma-rays and calculated proton spectrum

Proton acceleration yes but only up to TeV? ← Dependent on age of SNR?

Stefan Funk, TAUP 2013, Asilomar, CA, US

Gamma-ray astronomy: IACT

gas density for hadronic magnetic fields for leptonic

Still no proof that SNR accelerate protons up to the knee, but also no exclusion....

Gernot Maier, TAUP 2013, Asilomar, CA, US

SciNeGHE 2014

-problems:

Synergy with Neutrino astronomy: IceCube

- cosmic neutrinos from IceCube correspond to 10¹⁷eV protons

← galactic or extragalactic source?

1017eV

Measured PeV-neutrinos by IceCube

42

1018eV

Andreas Haungs

Public Cosmic Ray Data: KASCADE Cosmic ray Data Centre

• KCDC = publishing research data from the KASCADE experiment

• Motivation and Idea of Open Data: general public has to be able to access and use the data the data has to be preserved for future generations

• Web portal:

providing a modern software solution for publishing KASCADE data for a general audience In a second step: release the software as Open Source for free use by other experiments

Data access:

1.6-10⁸ EAS events of first data release is now available

https://kcdc.ikp.kit.edu/

KASCADE-Grande: Mission Accomplished !!

open access to research data https://kcdc.ikp.kit.edu

Andreas Haungs

<u> IIX 🕹 </u>

Summary

KASCADE:

Contribution to most important question!

Hopefully not another 100 years (since V.Hess) or even 25 years (since KASCADE) needed to finally answer this question

