The Gamma-Ray Milky Way above 10 GeV

Distinguishing Sources from Diffuse Emission with Fermi/LAT

Ellis Owen¹, Christoph Deil¹, Axel Donath¹, Régis Terrier²

¹Max-Planck-Institut für Kernphysik, Heidelberg ²Astroparticules & Cosmologie, CNRS/Université Paris 7

SciNeGHE 2014

5th June 2014, Lisbon

Image: 4 year Fermi Diffuse model (@ 100) GeV

Outline

- A study to look at methods of distinguishing Sources from Background Emission in the Gamma-Ray Galactic Plane > 10 GeV
 - Significance clipping methods combined with elongated filter smoothing
 - Source clipping to offer an **estimation for background flux contribution** for data-sets, and leaving a residual of sources
- How to test the ability of a method distinguished Sources/Background?
- Outline of how significance clipping type **methods** work
- Preliminary Application to Fermi/LAT data 10 GeV 500 GeV
 - Background Estimation
 - **Comparison** of Estimated Background to Fermi Diffuse model as an existing representation of Galactic Background Flux contribution (gll_iem_v05.fits)

Next steps

- **Testing** the method
 - Model Galaxies:
 - Background Model
 - Source Catalog
 - Observational/Simulated

Introduction

- **Detected sources**; sources unambiguously detected above some threshold
- **Background** emission, comprising of
 - Unresolved sources
 - Truly diffuse emission, which is not directly attributed to sources

	Latitude Range	Longitude Range
Galactic Plane Region	-5 <b<5< td=""><td>-100<l<100< td=""></l<100<></td></b<5<>	-100 <l<100< td=""></l<100<>

Evaluating Background Estimation

Outline of the Significance Clipping Method

Iterative Scheme • Note: test00 backpround fit Initial Background Estimate = Counts Background-kernel convolved counts image test01 background fit Background Significance Mask New Background Significance 00 etc... 00 ... until no change in mask (iteration termination condition)

Parameters

(For this study)

Input Models

- **Source** contribution + **Background** Contribution
 - Population from **Source Catalog**
 - 1FHL
 - Simulated galaxy populations

In each of these cases, the background will be the Fermi Diffuse model (gll_iem_v05.fits)

- Based on gas maps, so will roughly follow shape of background emission

				30	
Source	Density at	Minimum	Maximum		Position of the sun
Model	the $\mathrm{Sun/kpc^{-3}}$	Luminosity	Luminosity	20 -	toneil .
		$/{ m ph~s^{-1}}$	$/{ m ph~s^{-1}}$		
Galaxy	3	10^{34}	10^{37}	10-	
Simulation 1				Ū	
				y [kp	
Galaxy	10	$4 \ge 10^{33}$	$4 \ge 10^{36}$		
Simulation 2				-10	
	20				
Galaxy	30	$1.5 \ge 10^{33}$	$1.5 \ge 10^{30}$	-20-	-
Simulation 3					
				-30	-20 -10 0 10 20 30

Note: Galaxy Simulations for the 10-500 GeV Energy Range

Input Models

		Region/ph cm ⁻ s ⁻	Galactic
			${ m Region}/\%$
Fermi 1FHL Catalog $> 10 GeV$	8.1e-08	2.3e-08	27.8
Galaxy Simulation 1	9.9e-08	8.5e-08	85.2
Galaxy Simulation 2	19e-08	13e-08	66.6
Galaxy Simulation 3	19e-08	14e-08	70.9

Using these models to evaluate the method is still a work in progress

However, preliminary results from application to Fermi/LAT data from 10-500 GeV

Background Estimation with Fermi/LAT data

- 10-500 GeV Fermi/LAT data
- Note slightly different latitude (+/- 3 degrees) and longitude (-100/+85 degrees)

• Ratio Image to Fermi Diffuse Model: Background Estimation/Fermi Diffuse Model

Background Estimation with *Fermi*/LAT data

Summary

- Study of methods to separate source & diffuse emission using $Fermi/{\rm LAT}$ data above 10 GeV
- Compare fraction of source and diffuse emission in data and models (of known source/diffuse proportions) to evaluate methods ability to reproduce known priors and study their success in separating source populations from diffuse/unresolved backgrounds

• We're developing a tool box for these kinds of studies – gammapy. Functionality for this analysis is being added to gammapy, an affiliated astropy Python package http://gammapy.readthedocs.org/en/latest/ γ_{π}

• We plan to continue & extend this study – please get in touch if interested!