

REVIEW OF DARK MATTER SEARCHES WITH CHERENKOV TELESCOPES

Javier Rico IFAE

SciNeGHE 2014 – LISBON 4-6 June 2014

Outline

- VHE astronomy with Cherenkov Gamma-ray Telescopes
- Dark matter searches with Cherenkov telescopes
 - Indirect dark matter searches with gamma rays
 - Searches in the Galactic center and halo
 - Searches in galaxy clusters
 - Searches in dwarf spheroidal galaxies
 - + Spectral features in the electron (positron) spectrum
- Discussion: how to go further
- Conclusions

CHERENKOV GAMMA RAY TELESCOPES

VHE Gamma-Ray Astronomy

- One of the pillars of Astroparticle Physics
- ♦ VHE gamma rays (100 GeV 100 TeV) produced in non-thermal processes → insight into the mechanisms of the Universe at its extreme
- VHE Gamma-ray astronomy addresses three broad science themes:
 - + Cosmic particle acceleration, propagation and interaction
 - + Probing extreme environments (pulsars, black holes, ...)
 - Physics frontiers (DM, LIV,...)
- Young field, in rapid evolution led by Cherenkov telescopes
 - ✤ Ist generation (80 90's):Whipple, HEGRA, ...
 - ✤ 2nd generation (2000's present): MAGIC, HESS, VERITAS
 - → 3rd generation (2020 2050?): CTA

Imaging technique

 \rightarrow Energy of primary

Image orientation

 \rightarrow Direction of primary

Image shape

 \rightarrow Kind of primary

LISBON, 6 June 2014

J. Rico - IFAE

Stereoscopy

Better determine:

- Energy
- Direction
- \rightarrow Better discrimination

between gammas and CRs

Ground-based Gamma-ray Astronomy

- Gamma-ray fluxes drop exponentially with energy → for E > ~100 GeV we need large collection areas → Cherenkov telescopes
- Huge CR background \rightarrow Imaging technique
- Energy range ~100 GeV 100 TeV
- Energy resolution 10 15%
- Angular resolution ~0.1° at I TeV
- ♦ Field of view 3 5 deg (~0.005 sr)
- Pointed observations, systematic scans of limited regions
- Several telescopes for better performance

The VHE sky in 2003

The VHE sky in 2014

Total: ~150 sources

LISBOIN, 6 June 2014	LISBO	N, 6	lune	201	4
----------------------	-------	------	------	-----	---

J. Rico - IFAE

Khomas Highland, Namibia

- 4 × 12m since 2003
- + I × 28m since 2012 (expecting results any moment)
- 5 deg FoV
- Optimal view on the Galactic central region \rightarrow high impact
- Collaboration: Germany + France + UK + Namibia + South Africa + Czech Republic + Ireland + Armenia + Poland + Australia + Austria + Sweden + USA

MAGIC

- 2 telescopes (2004, 2009)
- 17 m diameter → 50 GeV energy threshold
- Fast movement to catch fast transients (GRBs)

- Full electronics upgrade (2011) and camera of MAGIC 1 replaced (2012)
- Collaboration: Germany + Spain + Italy + Switzerland + Poland + Croatia + Japan + Bulgaria + Finland

VERITAS

- 4 telescopes (2007)
- I2 m diameter
- Full camera PMTs upgraded (2012)
- 500 pixel/camera
- 3.5 diameter FoV
- Collaboration: USA + Canada
 + Ireland + UK

Cherenkov Telescope Array

- Northern and Southern sites
- Up to 150 telescopes of 3 different dish sizes
- I0 times better sensitivity

- Energy range 10 GeV 300 TeV
- Improved angular and energy resolutions
- Operated as an open observatory

DARK MATTER SEARCHES WITH CHERENKOV TELESCOPES

Indirect dark matter searches

DM DM $\longrightarrow e^{\pm}, \overline{p}, \gamma, \nu$

Charged cosmic rays

- + diffuse through magnetic field
- anomaly in isotropic CR spectrum
- + positron fraction excess

Neutrinos

- point back to the source
- + can escape compact objects

Photons

- point back to the source
- + spectral and spatial features
- + gamma-ray domain

Gamma-ray fluxes $\frac{d\Phi(\Delta\Omega)}{dE} = \frac{d\Phi^{\rm PP}}{dE} \times J(\Delta\Omega)$ Annihilation Particle Physics term Astrophysical term $\frac{d\Phi_{\rm ann}^{\rm PP}}{dE} = \frac{\langle \sigma_{\rm ann} v \rangle}{8\pi m_{\chi}^2} \frac{dN}{dE}$ $J_{\rm ann}(\Delta\Omega) = \int d\Omega \int \rho^2(l,\Omega) dl$

- m_{γ} dark matter particle mass
- $<\sigma_{\rm ann}\nu>$ thermally thermally averaged annihilation cross section times velocity
- dN/dE differential gamma-ray yieldper annihilation

Fixed by the model, source-independent

$$ho$$
 – dark matter density

- $\Delta \Omega$ solid angle
- line of sight

Depends on the given source, on the dark matter distribution and on the instrument

LISBON, 6 June 2014

J. Rico - IFAE

Gamma-ray fluxes

 $<\sigma_{\rm ann}v>$ / $2m_{\chi}^2 \longrightarrow 1/m_{\chi}\tau_{\chi}$

Fixed by the model, source-independent

$$\rho^2 \longrightarrow \rho$$

Depends on the given source, on the dark matter distribution and on the instrument

Observed targets

Target	Year	Time	Experiment	Target	Year	Time	Experiment
Globular Clusters				Galaxy Clusters			
M15	2002	0.2	Whipple	Abell 2029	2003-2004	6	Whipple
	2006-2007	15.2	H.E.S.S.	Perseus	2004-2005	13.5	Whipple
M33	2002-2004	7.9	Whipple		2008	24.4	MAGIC
M32	2004	6.9	Whipple	Fornax	2005	14.5	H.E.S.S.
NGC 6388	2008-2009	27.2	H.E.S.S.	Coma	2008	18.6	VERITAS
Dwarf Satellite Gala	xies			The Milky Way central region			
Draco	2003	7.4	Whipple	MW Center	2004	48.7	H.E.S.S.
	2007	7.8	MAGIC	MW Center Halo	2004-2008	112	H.E.S.S.
	2007	18.4	VERITAS	Other searches			
Ursa Minor	2003	7.9	Vhipple		2004 2007	400	
	2007	18.9	VERITAS		2004-2007	400	п.е.з.з.
Sagittarius	2006	11	H.E.S.S.		2006-2007	25	MAGIC
Canis Major	2006	9.6	H.E.S.S.	Lines	2004-2008	112	H.E.S.S.
Willman 1	2007-2008	13.7	VERITAS		2010-2013	158	MAGIC
	2008	15.5	MAGIC	UFOs	-	-	MAGIC
Sculptor	2008	11.8	H.E.S.S.		-	-	VERITAS
Carina	2008-2009	14.8	H.E.S.S.	All-electron	2004-2007	239	H.E.S.S.
Segue 1	2008-2009	29.4	MAGIC		2009-2010	14	MAGIC
	2010–2011	48	VERITAS	Moon-shadow	-	-	MAGIC
	2010-2013	158	MAGIC				
Boötes	2009	14.3	VERITAS				

Doro, NIM A742 (2014) 99

J. Rico - IFAE

EXPERIMENTAL RESULTS

Galactic center and halo

Aharonian et al. 2006, Nature 439, 695

- Highest J-factor from Earth, thanks to proximity
- Obvious target for dark matter searches
- Two main drawbacks:
 - + Astrophysical background:
 - Central source HESS J2745-290
 - Diffuse from CR interactions with molecular clouds
 - + Uncertain central DM distribution:
 - SMBH can create DM spike or soften cusp
 - Adiabatic contraction from baryon in-fall would increase DM concentration
 - Feedback would flatten DM distribution

Galactic center observations

Instrument	Year	Т [h]	E [TeV]
HESS	2003	17	0.2-10
HESS	2004	49	0.2-30
MAGIC	2005	17	0.4-20

- Intense central source ~10% Crab at I TeV plus extended diffuse emission
- Steady flux
- Pure power law spectrum, no DM features seen
- Limits relatively weak (~10⁻²³ cm³s⁻¹) due to high astrophysical background

HESS observations of Galactic halo

- II2 h of observations between 2004-2008
- Effective J-factor ~10²¹ GeV²cm⁻⁵ (factor 2 difference between NFW and Einasto)
- Factor ~100 higher than for optimal satellite galaxies
- Method insensitive in case of isothermal profile (DM subtracted as background)
- No sensitivity for decaying scenarios
- No signal seen → upper limits to <₀v>

HESS observations of Galactic halo

- Best limits attained by Cherenkov telescopes (<σv> < 3×10²⁵ cm³s⁻¹ at m~1TeV)
- Factor 10 above region of viable super-symmetric models

HESS observations of Galactic halo

- Lines are searched as spectral features on top of smooth background
- No significant indication → limits in the range 10⁻²⁷-10⁻²⁶ cm³/s for masses between 500 GeV and 20 TeV

Galaxy clusters

Perseus cluster (Ritchey-Chretien 32" Telescope)

Bullet cluster (NASA)

- Largest structures in Universe:
 - + Mass: 10¹⁴-10¹⁵ M_☉
 - Size: few Mpc
- Actively evolving
- Contain substantial CR and DM populations
- DM makes ~80% of their mass
- Laboratories to test theories of origin and evolution of the Universe

Galaxy clusters

- Substructures can increase annihilation flux by factors O(100) wrt prediction for smooth halo
- Sources appear extended for Cherenkov telescopes
- Big uncertainties due to extrapolation of simulations by several orders of magnitude
 - Enhance chances of discovery
 - Difficult to translate negative result into limits

HESS observations of galaxy clusters

Observed cluster with one of best DM emission prospects

Target	Year	Т [h]	J [GeV ² cm ⁻⁵]
Fornax	2005	15	(0.06-1)x10 ¹⁸

- Quite some uncertainty in the DM profile (O(1-2) between different parameterizations)
- Quite some uncertainty from substructures (O(2))
- Integration region up to I deg radius for substructures
- Limits are O(3-4) worse than for Galactic center halo

MAGIC observations of galaxy clusters

 Main aim is to look for gamma rays from CR interactions with IC medium

Target	Year	Т [h]	J [GeV²cm⁻⁵]
Perseus	2008	24	1x10 ¹⁷

 Limits O(4-5) worse than for Galactic center halo

Aleksić et al. 2010 ApJ 710, 634

VERITAS observations of galaxy clusters

J. Rico - IFAE

Satellite galaxies

- Dark matter clumps in the Galaxy with stellar activity (25 known so far)
- Distance up to 250 kpc
- Ultra-faint population discovered by Sloan Digital Sky Survey (North)
- Dark matter distribution fitted using stellar kinematics
 - + Unless tidally disrupted
 - All have similar masses
 - + Large mass-to-light ratios → most dark matter dominated objects → luminous matter marginal role
- Most robust astrophysical probe into the nature of dark matter

Satellite galaxies

Ackermann et al. 2014, PRD 89, 042001

Name	GLON (deg)	GLAT (deg)	Distance (kpc)	$\overline{log_{10}(J^{NFW})^a}_{(log_{10}[GeV^2 cm^{-5} sr])}$			
Bootes I	358.1	69.6	66	18.8 ± 0.22	≽	VERITAS	
Bootes II	353.7	68.9	42				
Bootes III	35.4	75.4	47				
Canes Venatici I	74.3	79.8	218	17.7 ± 0.26			
Canes Venatici II	113.6	82.7	160	17.9 ± 0.25			
Canis Major	240.0	-8.0	7		≯	HESS	
Carina	260.1	-22.2	105	18.1 ± 0.23	≯	HESS	
Coma Berenices	241.9	83.6	44	19.0 ± 0.25			
Draco	86.4	34.7	76	18.8 ± 0.16	≻	MAGIC, VERITAS	
Formax	237.1	-65.7	147	18.2 ± 0.21			~ 200 have af
Hercules	28.7	36.9	132	18.1 ± 0.25			
Leo I	226.0	49.1	254	17.7 ± 0.18			Cherenkov
Leo II	220.2	67.2	233	17.6 ± 0.18			telescopes on
Leo IV	265.4	56.5	154	17.9 ± 0.28			satellite galaxies
Leo V	261.9	58.5	178				satellite galaxies
Pisces II	79.2	-47.1	182				
Sagittarius	5.6	-14.2	26		≽	HESS	
Sculptor	287.5	-83.2	86	18.6 ± 0.18	≻	HESS	
Segue 1	220.5	50.4	23	19.5 ± 0.29	≯	MAGIC, VERITAS	
Segue 2	149.4	-38.1	35				
Sextans	243.5	42.3	86	18.4 ± 0.27			
Ursa Major I	159.4	54.4	97	18.3 ± 0.24			
Ursa Major II	152.5	37.4	32	19.3 ± 0.28			
Ursa Minor	105.0	44.8	76	18.8 ± 0.19	≽	VERITAS	
Willman 1	158.6	56.8	38	19.1 ± 0.31	≻	MAGIC, VERITAS	

HESS observations of satellite galaxies

VERITAS observations of satellite galaxies

MAGIC observations of satellite galaxies

Summary observations of satellite galaxies

LISBON, 6 June 2014

J. Rico - IFAE

Spectral signatures from electrons/positrons

- Primary sources produce equal amounts of particles and antiparticles
- Nearby primary source modifies electron/positron spectra wrt standard CR propagation and interaction
- Primary sources: PWN, μQSR, DM
- Cherenkov telescope can look for those (electrons/positrons produce EM showers just like gammas)
- ◆ Spatial information is lost due to magnetic fields → new analysis techniques

All-electron spectrum

- Alternative technique: measure all-electron spectrum from fields free of gamma-ray sources
- ◆ Electron shower ≈ gamma shower → separation power through image analysis (hadronness)
- Electrons more abundant than gammas in isotropic flux
- ◆ Diffuse flux → spatial information not used
- Instead, use hadronness distributions from data vs Monte Carlo

All-electron spectrum measurements

Instrument	Year	Т [h]	E [TeV]
HESS	2004- 2007	239	0.7-5
HESS	2004- 2005	77	0.4-1
MAGIC	2009- 2010	14	0.1-3

 HESS: analysis at high and low energies

- ATIC feature not confirmed
- Spectral break at I TeV ($\Gamma: 3.0 \rightarrow 4.1$)
- MAGIC: preliminary confirmation (Borla-Tridon 2011)

Aharonian et al. 2009 A&A 508, 561 Aharonian et al. 2008 PRL 101, 261104

Moon shadow

- Moon + Earth magnetosphere \rightarrow natural CR spectrometer
- The Moon shadow position depends on:
 - CR kinetic energy
 - CR charge
- MAGIC can observe close to the Moon (low gain PMTs) and measure the ratio e+/e- in the flux of cosmic rays in the energy range 300 GeV – I TeV

Current approach and limitations

- MAGIC observes currently at 4° from the Moon, reducing the PMT gain by factor 2
 - \rightarrow possible until NSB = 40×NSB_{dark} or Moon phase = 50%
- Performance not much degraded (evaluated with data)
 - Energy threshold ~150-600 GeV
 - Sensitivity above 300 GeV = 1.2% Crab (factor
 1.5 worse)
- Measurement possible between 0.3-1 TeV
- Giving this, the needed observation times are:
 - → 30-90 h for e⁻
 - + 100-800 h for e⁺
- The problem: keeping two contradicting conditions:
 - Zd < 50° (for low energy threshold)
 - + NSB < $40 \times NSB_{dark} \rightarrow high Zd$

results in narrow observation window per year (~20 for e^- and ~20 for e^+) which need to be perfect weather

The solution: use UV-pass filters (stay tuned)

DISCUSSION

How to go further?

 With MAGIC, one order of magnitude improvement wrt mono was possible thanks to:

- ~2 analysis optimization (1)
- × 2 better sensitivity of stereo (2)
- × $\sqrt{5}$ times from observation time (3)
- + choice of optimal target (4)
- Further improvement?
 - I) Not obvious how to gain more
 - 2) Exploit the sensitivity leap of factor ~5-10 by CTA
 - 3) Not much can be done at least by each instrument on its own \rightarrow merge results
 - 4) Explore other targets; new dSph to be discovered by DES

Conventional analysis

ON = signal [?] + bkg

 $\mathsf{OFF} = \tau \times \mathsf{bkg}$

au – bkg normalization (~ # background regions)

- n measured number of ON events
- m measured number of OFF events
- g estimated number of signal events
- b estimated number of bkg events (in ON region)

g & b – estimated by maximizing:

$$\mathcal{L}(g,b \mid n,m) = \frac{(g+b)^n}{n!} e^{-(g+b)} \times \frac{(\tau b)^m}{m!} e^{-(\tau b)}$$
ON OFF

Full Likelihood analysis

LISBON, 6 June 2014

J. Rico - IFAE

Prospects for CTA

- Dark matter searches are one of the main scientific objectives for CTA
- Factor ~5-10 more sensitive than with current instruments
- For the baseline density profiles it is expected to explore WIMP parameter space
- Full Likelihood still to be considered
- SUSY parameter space to be probed by observations of the Galactic center halo

Satellite galaxies vs galaxy clusters

	J _{ann} (0.1°) [GeV²/cm ⁵]	J _{dec} (0.1°) [GeV/cm²]
Segue I	10×10 ¹⁸	2×10 ¹⁷
Fornax cluster	1×10 ¹⁸	20×10 ¹⁷
Perseus cluster	0.2×10 ¹⁸	15×10 ¹⁷

- Annihilation fluxes higher for satellite galaxies than for galaxy clusters (assuming smooth DM distribution)
- Inverse situation for decay scenarios → use clusters for decaying dark matter

Global dark matter search

- Use a global likelihood to combine results from different telescopes (MAGIC, VERITAS, HESS & Fermi-LAT)
- Another factor ~2 improvement wrt to present results (thanks to longer global exposure)
- Combination of instruments is rather trivial, no "private" information from Collaborations needs to be shared
- Combination of sources of the same type also simple and desirable:
 - Use all dwarfs from all instruments to search for annihilating dark matter
 - Use all clusters from all instruments to search for decaying dark matter

Negotiations with Fermi-LAT and VERITAS are already under way

Conclusion

- Cherenkov telescopes have searched for DM from several promising targets
- CTA will explore SUSY parameter space
- The present generation has not been fully exploited yet:
 - Exploiting DM unique spectral features is the key for optimal search
 - Decay signals not optimally exploited yet
 - + As instruments reach their statistics limit \rightarrow merge results

THANK YOU!