Cosmic Ray anisotropy with HAWC

Ignacio Taboada Georgia Institute of Technology

Motivation

Observations

Theory

Kegwords: cosmic rays; diffusion; collisionless space plasma; pressure anisotropy

Data Set

Using HAWC-95 and HAWC-111

June 2013 – February 2014 114 full sidereal days

> 50 billion events, 1.2° median ang. res., 1.8 TeV median energy

HAWC-111 Moon Shadow

Analysis Technique

HEALpix(K.M. Gorski et al., Astrophys. J., 2005, 622, 759)Equal-area binning of the sphere

"Direct Integration" (R.Atkins et al., Astrophys. J., 2003, 595, 803.) Method to estimate background using the data themselves

PolSpice(I. Szapudi et al. 2001, Astrophys. J., 548, L115)Software to compute power spectrum with partial sky coverage

Large Scale Anisotropy

Shows largest accessible features (24 hr background estimation) Smoothed 10°

Dipole deficit is consistent with previous observations (1×10^{-3} @ ra=200°, dec) **Brightest region sits in region of general excess** (ra=60°, dec=-10°)

Power Spectrum

Power spectrum of Large-Scale (24h bkg est). Strong dipole + quadrupole

Power Spectrum

Local Magnetic Turbulence and PeV-TeV Cosmic-Ray Anisotropies G. Giacinti and G. Sigl, Phys. Rev. Lett. 109, 071101 (2012) <u>arXiv:1111.2536</u>

Anomalous Anisotropies of Cosmic Rays from Turbulent Magnetic Fields *M. Ahlers,* Phys. Rev. Lett 112, 021101 (2014) <u>arXiv:1310.5712</u>

Fit dipole+quadrupole to map for 24-hr background estimation

Subtracted fit relative intensity from 24-hr map

Fit dipole+quadrupole to map for 24-hr background estimation

Subtracted fit relative intensity from 24-hr map

Fit dipole+quadrupole to map for 24-hr background estimation

Subtracted fit relative intensity from 24-hr map

4 hr background estimation

Shows features ~ 60°. Background fits to any features larger than that Regions A, B and C are the only statistically significant excesses (> 5σ post-trials)

360° 0° -2 2 -8 -6 0 4 6 8 -4 10 -10 relative intensity $[x \ 10^{-4}]$ 1.8 TeV median Ignacio Taboada | Georgia Institute of Technology | SciNeGHE 2014

Region A Explanations for localized excess?

Local interstellar magnetic fields M. Amenomori et al., Astrophys. Space Sci. Trans. 6, 49 (2010). A. Lazarian and P. Desiati, Astrophys. J. 722, 188 (2010).

Magnetic bottle L. Drury and F. Aharonian, Astropart. Phys. 29, 420(2008).

Milagro saw cutoff at $\sim 4 - 20$ TeV

Region C

Comparisons

Conclusions

HAWC detected 3 regions of cosmic-ray excess

- 2 previously discovered (Region A & B)
- 1 newly discovered (Region C)

Consistency with ARGO observations

Energy-dependent study is promising and getting better