Solar panel as cosmic ray detectors

Carlo Stella, Pedro Assis, Pedro Brougueira, Alessandro De Angelis, Catarina Espirito Santo, Patricia Goncalves, Michele Palatiello and Mario Pimenta

Outline

- Solar panel array detector concept
- Proposal for the development of a detector unit prototype

Solar panel array detector concept

Solar panel array detector concept

Solar cells are n-i-p junction with:

- High quantum efficiency
- Sensitivity in Cherenkov spectral range

These considerations and recent technological developments make the use of solar panel arrays as cosmic ray detectors a possible choice!

Detection with solar panels – 4 factors to consider

Primary cosmic ray

Proton-initiated shower of 1 EeV => 1-2 Mphoton/m² with Δt = 10 ns

Solar panel

Typical commercial solar panel efficiency is 15% and time integration of 50-100 ns

Noise

Moon => 100 Mphoton/m² in 100 ns in visible

Detection with solar panels – 4 factors to consider

Impact parameters

Zenith angle and distance between the shower core and the detector influence the detection, for example the FWHM duration of the signal @ ground is of the order of 10-100 ns, depending on the zenith angle.

Energy threshold of CR (with S/ \sqrt{B} = 3 @ 500m from shower core)

 E_{thr} (EeV) ~ 0.08 (5m²/A)^{1/2} (30%/ ϵ)^{1/2} I

 ϵ = Solar panel efficiency A = Detector sensitive area

I = square root of the number of background photon in visible per square meter normalized to full moon condition

• Energy threshold in different situations (1 EeV = 10^{18} eV)

	Dark night	Full moon	Dusk/dawn	Average sunlight
E (EeV)	0.03	0.08	0.3	10

Duty cycles and possible enhancements

Duty cycles

- Possible enhancements
 - Reduce distance between detectors:

interaction @ 300m = 5 x interaction @ 500m

Improve time resolution

O(20 ns)

relation between time and height

Develop multi-junction solar cells with better efficiency

Proposal

Proposal

Challenge

S/ $\sqrt{B} \alpha$ (Sensitive area)^{1/2} but Large area increases solar panels capacitance

Scope

- Test this concept profiting from the recent developments in solar panels
- Develop an optimized system to filter the faint light fast signals from the background
- Multi-junction cells
 - A new interesting technology with high efficiency (40%) and sensitive in the UV

Possible tests

In lab

2 different light sources => background light + Cherenkov light pulse

with cherenkov light pulse produced by calibrated led @ different frequency, with different duration and variable number of photons

• Outside

tests under field conditions in coincidence with ground array detectors

Prototype design

- Baseline
 - Truncated pyramid (high geometrical efficiency)
 - 5 panels: 9 m² area
 - Time resolution O(50 ns)
 - Solar panels will also power supply the detector

- Evolution = Baseline + SiPM mini-eye with full sky coverage
 - Fast response O(10 ns)
 - High angular resolution
 - In dark night sensitive to shower fluorescence light

Goal

- Produce a detector unit with all the developed technology to create a "real life" scenario
- Challenge to integrate different aspects:
 - Geometry

. . .

- Electronics
- Shadow shielding effects

- Global optimization of design parameters
- Solar Panel Array performance studies will contribute for the next generation of Cosmic Ray Detectors!