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Lessons from General Relativity



Foundations of GR

- General Principle of Relativity: the content of physical laws
should not depend on the reference frame used to describe

them.
S:AE ()

- Principle of Equivalence: an inertial reference frame subject to
gravity is indistinguishable from an accelerated one.

L= £(ga (pmatter) (2)



Foundations of GR

- Einstein-Hilbert action:

S= / d*xv/=9 [R(g) — 2\ + 2KLmatter] (3)
M

- GRis a theory of the curvature R of a connection V. The
connection is uniquely determined by the metric by demanding
metric compatibility and vanishing torsion.



A Gauge Theory Formulation



Tetrads of spacetime

- At every point in M we may consider a set of 4 linearly
independent vectors {e}, e, € TM such that g(e, ¢;) = n,. Can
be thought of as maps

e:Mx R = M

(x,8r) = (x, efau)

(4)
- The metric at every point can be reconstructed from the duals
6'(e)) =6 withg=n,6'®¥@.

- Tetrads are defined up to the the isometry group G = SO(3,1) of
the Minkowski metric, AnAT = n.



Tetrads of spacetime

- General Relativity can be reformulated in terms of these tetrads.

{T : F = -F-inertial}

- But there is a gauge redundancy G = SO(3,1)!



Tetrads of spacetime

There is a gauge theory for tetrads:
- Gauge encoded in a principal bundle P(G, M) I M and
connection form w € Q(P,s0(3,1)).
- Vector bundle £ = P x, R*" with fundamental representation p.
- Eand TM are both vector bundles of the same finite dimension
= we have an isomorphism acting on canonical sections of E,
e.:E—TM

o+ eld,.

(5)

We recover the tetrads from e' = e(d'), and hence a metric
|
g=n0'c6.



Tetradic Palatini theory

The connection in P induces one in TM, from which R can be derived.
One can show the EH action becomes

Sr= [ PAIAX@A8) - SO NS Ax(BAG).  (6)
M

- The metric g from 6' turns out to naturally allow metric
compatibility.

- Varying the action wrt to the gauge field A imposes vanishing
curvature.

This is the same curvature from GR!
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Other formulations

We can play around with this action:
- Holst action adds irrelevant term,
1
Sy = / FU[A] A <*+ > (611N 0) (8)
M Y
- Can extract tetrads from a two-form B using constraints,

G — / By A FUIA] + @ B” A B, (9)
M

o 5 BUABKL = KLy, (10)
op



States and Observables



Spin-networks

We consider a compact-G gauge theory over an embedded graph .
- Space of connections A, = GI%! g, = Pexp {— fVA}
- Gauge group G, = GYl, g, — 979,95

Quantum states will be elements of H = L?(Ay/Gy).



- The action of G, on A, induces a representation of G on L?(G)
"from both sides” and "at each edge”. Peter-Weyl theorem:

~ Q) P on (1)
ec&y Aeh
- This can be massaged to
~@®<®He®®ﬂz>, (12)
N—=Ep vEVy \ecSy ecTy

- The Hilbert space is therefore

(A /Ge) ~ D ®|nv<®%e®7-l>

N—Ep VEVy eeS, eeTy
~P R |nt<®7—le,®7-le> (13)
N—Ep VeV, ecsSy ecTy



Spin-networks

- A general state in H will have the form
m J -Jn
= @D Q@i (14)
N—=Ep VEV,

- Wave-functions of the connection are constructed as

B e e
w(A) = (pém(HA o " o pl (H >>o..‘o(p;ut<<Hf; ) ot ot (H >>

Ly
P4 P5
P6

Y(4) = (p1)a()fe(p2)5 (03) (P )& (12) 7 (P51, (pa)g (1) (121



Observables

For concreteness, we choose G = SU(2) and focus on

H = @ |ﬂV5u(2) (}O ®j1 ®j2 ®j3) : (15)
JoJ1:2,43

- Define the operators B) =)/ @ 1@ 1@ 1, B =1® ) ® 1®1, etc.
- The BL generate the action of Gon T = ), j;, SO

H:{weT’ZBuw:O}. (16)
H
- Area and volume operators:

A, = /B, - B,

— (17)
V= §|€,'j;?Blsz18§‘ .
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Observables

For SU(2) the area operator is just the Casimir,

Aulw) = \/julp + 1) @) (18)



A Toy Model in 3d




3d BF theory

We start with the Riemannian Palatini theory in 3d, setting G = SO(3),

s® = / encF'TA] A BF. (19)
M

It can be written as a BF theory,

Sgr = / Tr(F[A] A B) R (20)
M

due to the natural identification so(3) ~ T*M.
Fixing M = R x M" and the gauge Ag = 0,

oL _,

i (21)
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Path integral quantization

- Formal path integral:

M) = /DADB el Ju Tr(FIAIAB)

_ /DA 5(FA)

- Discretization via triangulation A and dual 2-complex A*:

%1‘

R* C A*

)< [Mwllo(Tle). @

ectE feF ecof



Path integral quantization

The Lie group delta is a function on the group, and can be expanded
by Peter-Weyl as

g9) =Y _dim(p)x,,(9)- (23)

AEN

(A*)=/HdgeH (Zdlm p)T {H pa( Qe])

ec& feF \AeA ecof
- > /Hdge dim(eA)Tr | I o5 (ge)
N—F ec& fef ecof
-5 [[Tomey /ndge Ter | TT | TL er(6e)
N—=F fe]—' ect feF \eeof

=Y | dimep) | Trrer [H (/dge 11 Pf(Qe))]

A=F |feF ec& f:ecof



Path integral quantization

There is a projector onto the invariant subspace for each edge,

ez & ® Hp, ® %;falnv(® Hp, ® H;f)
J (24)

fes(e) feT(e) €S(e) feT(e)

”e:/m dge Q) pr(ge) ® P (Ge)

feS(e) feT (e

In 3d each edge is shared by 3 faces, so the projector is simply

e = / dge p1(9)P,2(9)P3(g) - (25)
5U(2)
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Path integral quantization

20y =>" Hdlm (07) | Tryer Hne]

A=F |feF Lee&

A=F |feF ec&

:A; _fl_[dim(pf)- H @ (26)
T TTe0es

-5 [T s 143 gg]
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Boundary states

A Spinfoam F(A*, p, 1) is a 2-complex colored with algebraic data.

It induces spin-network boundary states, with an amplitude map
given by

A@FIR)=| T dim(pp II ¢ - (27)

fe(FnR*) ve(VNR*)

21



Boundary states

&%

R* C A*

= v

OF|g = (X%, 0p,00)
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EPRL Model




4d BF with constraints

Tetradic Palatini from BF theory, with G = SL(2,C):
S:/F”/\(1+1*) By, B'=xx(6'AF) (28)
M Y
Construct smeared fields b} = [._, B'. The bivector xby is simple iff

ni(xbp)” =0, forall fin the same tetrahedron t (29)

Variable conjugated to A is associated to 5]/! = (1 + %*) b]’ﬁ, S0
quantization will relate it to generators J,

pll — v 1 1 Iy (30)
f_y2—|—1 —\7* jf. 30

We will fix n' = 66, corresponding to setting all tetrahedra to be
spacelike.
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4d BF with constraints

One then finds that the geometricity constraints restrict the
representations of SL(2,C)

[(p, )3y m) B 1(2vj, 2)):,m) (31)
making the Hilbert spaces into SU(2) ones. There is an isomorphism

I+ L2(SL(2,C))|constr. — LA(SU(2))

. . . (32)
[(2v),n);2j, m) = |j,m) ,

so the boundary space is

Hs = GB ® INVsy(2) ( ® 7‘[ (@ptr2ls) ® H*Qw’%)) . (33)

joF eck fes(e) feT(e)
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Path integral quantization

:/Hdgef (Z/dp n? + p?) Tr[Hf< ) (g»])

ec& neZ
i /Hdge ( n? + p*)fTr [H D (ge)])
Yo F ec€ feFr ecof
= I H(” +p°)s /HdgeTrfe}‘ |:H (H Df (Qe))]
ysF LfeF ] eef feF \eeof

= I H(n2+p2)f Trfe]—‘|: (/dge H Df (ge )] )
] ec& f:ecof

X—F |feF
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EPRL Partition Function

I {f[(n2 + pz)f] Trier [H Meofo ne]

ySsF UeF ecs

LLl furs BEBEDE
15 fa o Y ED @ g

HZ axs, €3 @ £

=> {Hj%(vzﬂ)
j—>F |feF

=) [Hj%(v“ﬂ)

J=F |feF
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