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Lessons from General Relativity



Foundations of GR

• General Principle of Relativity: the content of physical laws
should not depend on the reference frame used to describe
them.

S =

∫
M
L (1)

• Principle of Equivalence: an inertial reference frame subject to
gravity is indistinguishable from an accelerated one.

L = L(g,φmatter) (2)
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Foundations of GR

• Einstein-Hilbert action:

S =

∫
M
d4x

√
−g

[
R(g)− 2Λ + 2κLmatter

]
(3)

• GR is a theory of the curvature R of a connection ∇. The
connection is uniquely determined by the metric by demanding
metric compatibility and vanishing torsion.
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A Gauge Theory Formulation



Tetrads of spacetime

• At every point in M we may consider a set of 4 linearly
independent vectors {eI}, eI ∈ TM such that g(eI, eJ) = ηIJ. Can
be thought of as maps

e : M× R3,1 → TM
(x, êI) 7→ (x, eμI ∂μ)

(4)

• The metric at every point can be reconstructed from the duals
θI(eJ) = δIJ with g = ηIJθ

I ⊗ θJ.

• Tetrads are defined up to the the isometry group G = SO(3, 1) of
the Minkowski metric, ΛηΛT = η.
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Tetrads of spacetime

• General Relativity can be reformulated in terms of these tetrads.

• But there is a gauge redundancy G = SO(3, 1)!
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Tetrads of spacetime

There is a gauge theory for tetrads:

• Gauge encoded in a principal bundle P(G,M)
π→ M and

connection form ω ∈ Ω(P, so(3, 1)).
• Vector bundle E = P×ρ R3,1 with fundamental representation ρ.
• E and TM are both vector bundles of the same finite dimension
⇒ we have an isomorphism acting on canonical sections of E,

e : E → TM
σI 7→ e μ

I ∂μ .
(5)

We recover the tetrads from eI = e(σI), and hence a metric
g = ηIJθ

I ⊗ θJ.
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Tetradic Palatini theory

The connection in P induces one in TM, from which R can be derived.
One can show the EH action becomes

ST =
∫
M
FIJ[A] ∧ ⋆(θI ∧ θJ)−

Λ
6 θI ∧ θJ ∧ ⋆(θI ∧ θJ) . (6)

• The metric g from θI turns out to naturally allow metric
compatibility.

• Varying the action wrt to the gauge field A imposes vanishing
curvature.

This is the same curvature from GR!
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Other formulations

We can play around with this action:

• Holst action adds irrelevant term,

SH =

∫
M
FIJ[A] ∧

(
⋆+

1
γ

)
(θI ∧ θJ) (8)

• Can extract tetrads from a two-form B using constraints,

ScBF =
∫
M
BIJ ∧ FIJ[A] + φIJKLBIJ ∧ BKL , (9)

δ
δφ → BIJ ∧ BKL = εIJKL V . (10)
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States and Observables



Spin-networks

We consider a compact-G gauge theory over an embedded graph φ.

• Space of connections Aφ = G|Eφ|, gγ = P exp
{
−
∫
γ A
}

• Gauge group Gφ = G|Vφ|, gγ → g−1
t gγgs

Quantum states will be elements of H = L2(Aφ/Gφ).
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Spin-networks

• The action of Gφ on Aφ induces a representation of G on L2(G)
”from both sides” and ”at each edge”. Peter-Weyl theorem:

L2(Aφ) '
⊗
e∈Eφ

⊕
λ∈Λ

Hλ ⊗H∗λ (11)

• This can be massaged to

L2(Aφ) '
⊕
Λ→Eφ

⊗
v∈Vφ

(⊗
e∈Sv

He ⊗
⊗
e∈Tv

H∗
e

)
, (12)

• The Hilbert space is therefore

L2(Aφ/Gφ) '
⊕
Λ→Eφ

⊗
v∈Vφ

Inv
(⊗

e∈Sv

He
⊗
e∈Tv

H∗
e

)

'
⊕
Λ→Eφ

⊗
v∈Vφ

Int
(⊗

e∈Sv

He,
⊗
e∈Tv

He

)
(13)
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Spin-networks

• A general state in H will have the form

|ψ〉 =
⊕
Λ→Eφ

⊗
v∈Vφ

(cv)i1...imj1...jn (ιv)
j1...jn
i1...im (14)

• Wave-functions of the connection are constructed as

ψ(A) =
(
ρv1out(H

eoutv1
A ) ◦ ιv1 ◦ ρv1in(H

einv1
A )

)
◦...◦

(
ρvnout((H

eoutvn
A )) ◦ ιvn ◦ ρvnin (H

einvn
A )

)
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Observables

For concreteness, we choose G = SU(2) and focus on

H =
⊕

j0,j1,j2,j3

InvSU(2) (j0 ⊗ j1 ⊗ j2 ⊗ j3) . (15)

• Define the operators Bi0 = Ji ⊗ 1⊗ 1⊗ 1, Bi1 = 1⊗ Ji ⊗ 1⊗ 1, etc.
• The Biμ generate the action of G on T =

⊗
i ji, so

H '

{
|ψ〉 ∈ T

∣∣∣∣ ∑
μ

Bμ |ψ〉 = 0
}

. (16)

• Area and volume operators:

Aμ =
√
Bμ · Bμ

V =

√
1
3! |εijkB

i
2B

j
1Bk3| .

(17)
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Observables

For SU(2) the area operator is just the Casimir,

Aμ |ψ〉 =
√
jμ(jμ + 1) |ψ〉 (18)
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A Toy Model in 3d



3d BF theory

We start with the Riemannian Palatini theory in 3d, setting G = SO(3),

S(3)T =

∫
M
εIJKFIJ[A] ∧ θK . (19)

It can be written as a BF theory,

SBF =
∫
M
Tr(F[A] ∧ B) , (20)

due to the natural identification so(3) ' T∗M.

Fixing M = R×M′ and the gauge A0 = 0,

∂L
∂Ȧ

= B . (21)
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Path integral quantization

• Formal path integral:

Z(M) =

∫
DADB ei

∫
M Tr(F[A]∧B)

=

∫
DA δ(F[A]) .

• Discretization via triangulation Δ and dual 2-complex Δ∗:

Z(Δ∗) =

∫ ∏
e∈E

dge
∏
f∈F

δ

∏
e∈∂f

ge

 , (22)
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Path integral quantization

The Lie group delta is a function on the group, and can be expanded
by Peter-Weyl as

δ(g) =
∑
λ∈Λ

dim(ρλ)χρλ(g) . (23)

Z(Δ∗) =

∫ ∏
e∈E

dge
∏
f∈F

∑
λ∈Λ

dim(ρλ)Tr

∏
e∈∂f

ρλ (ge)


=
∑
Λ→F

∫ ∏
e∈E

dge
∏
f∈F

dim(ρf)Tr

∏
e∈∂f

ρf (ge)


=
∑
Λ→F

∏
f∈F

dim(ρf)

∫ ∏
e∈E

dge Trf∈F

∏
f∈F

∏
e∈∂f

ρf (ge)


=
∑
Λ→F

∏
f∈F

dim(ρf)

 Trf∈F

∏
e∈E

∫ dge
∏

f: e∈∂f

ρf (ge)
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Path integral quantization

There is a projector onto the invariant subspace for each edge,

πe :
⊗

f∈S(e)

Hρf

⊗
f∈T (e)

H∗
ρf → Inv

 ⊗
f∈S(e)

Hρf

⊗
f∈T (e)

H∗
ρf


πe =

∫
SU(2)

dge
⊗

f∈S(e)

ρf(ge)
⊗

f∈T (e)

ρ∗f (ge) ,
(24)

In 3d each edge is shared by 3 faces, so the projector is simply

πe =
∫
SU(2)

dge ρ1(g)ρ2(g)ρ3(g) . (25)
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Path integral quantization

Z(Δ∗) =
∑
Λ→F

∏
f∈F

dim(ρf)

 Trf∈F

[∏
e∈E

πe

]

=
∑
Λ→F

∏
f∈F

dim(ρf)

 Trf∈F

∏
e∈E

1



=
∑
Λ→F

∏
f∈F

dim(ρf)



∏
v∈V

√

 (26)
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Boundary states

A Spinfoam F(Δ∗,ρ, ι) is a 2-complex colored with algebraic data.

It induces spin-network boundary states, with an amplitude map
given by

A(∂F|R) =

 ∏
f∈(F∩R∗)

dim(ρf)

 ∏
v∈(V∩R∗)

6j

 . (27)
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Boundary states
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EPRL Model



4d BF with constraints

Tetradic Palatini from BF theory, with G = SL(2,C):

S =

∫
M
FIJ ∧

(
1+ 1

γ⋆
)
BIJ , BIJ = ± ⋆ (θI ∧ θJ) (28)

Construct smeared fields bIJf =
∫
f⊂Δ B

IJ. The bivector ⋆bf is simple iff

nI(⋆bf)IJ = 0, for all f in the same tetrahedron t (29)

Variable conjugated to A is associated to b̃IJf =
(
1+ 1

γ⋆
)
bIJf , so

quantization will relate it to generators JIJ,

bIJf =
γ2

γ2 + 1

(
1− 1

γ⋆
)
JIJf . (30)

We will fix nI = δI0, corresponding to setting all tetrahedra to be
spacelike.
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4d BF with constraints

One then finds that the geometricity constraints restrict the
representations of SL(2,C)

|(p,n); j,m〉 constr.→ |(2γj, 2j); j,m〉 , (31)

making the Hilbert spaces into SU(2) ones. There is an isomorphism

I : L2(SL(2,C))|constr. → L2(SU(2))
|(2γj,n); 2j,m〉 7→ |j,m〉 ,

(32)

so the boundary space is

HΣ =
⊕
j→F

⊗
e∈E

InvSU(2)

 ⊗
f∈S(e)

H(2jfγ,2jf)
jf

⊗
f∈T (e)

H∗(2jfγ,2jf)
jf

 . (33)
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Path integral quantization

Z(Δ∗) =

∫ ∏
e∈E

dge
∏
f∈F

∑
n∈Z

∫
R
dp (n2 + p2)Tr

∏
e∈∂f

(D∗)χ (ge)


=
∑∫
χ→F

∫ ∏
e∈E

dge
∏
f∈F

(n2 + p2)fTr

∏
e∈∂f

D∗
f (ge)


=
∑∫
χ→F

∏
f∈F

(n2 + p2)f

∫ ∏
e∈E

dgeTrf∈F

∏
f∈F

∏
e∈∂f

D∗
f (ge)


=
∑∫
χ→F

∏
f∈F

(n2 + p2)f

 Trf∈F

∏
e∈E

∫ dge
∏

f: e∈∂f

D∗
f (ge)

 ,
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EPRL Partition Function

∑∫
χ→F

∏
f∈F

(n2 + p2)f

 Trf∈F

[∏
e∈E

πe ◦ f ◦ πe

]

=
∑
j→F

∏
f∈F

j2f (γ2 + 1)

 Trf∈F

[∏
e∈E

∫
dχ dχ′ ΔχΔχ′

χ′

f

χ
]

=
∑
j→F

[...] Trf∈F

∏
e∈E

∑
ι

∫
dχ dχ′ ΔχΔχ′

Γ†γΓγ
χ′χ ι



=
∑
j→F

∏
f∈F

j2f (γ2 + 1)



∏
v∈V


5∏

i=1

∑
ιi

∫
dχiΔχi
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