

27 de novembro às 14 h 00
Sala de Conferências

Spin-foam models of Quantum Space-Time

José Diogo Simão

Contents

1. Lessons from General Relativity
2. A Gauge Theory Formulation
3. States and Observables
4. A Toy Model in 3d
5. EPRL Model

Lessons from General Relativity

Foundations of GR

- General Principle of Relativity: the content of physical laws should not depend on the reference frame used to describe them.

$$
\begin{equation*}
S=\int_{M} \mathcal{L} \tag{1}
\end{equation*}
$$

- Principle of Equivalence: an inertial reference frame subject to gravity is indistinguishable from an accelerated one.

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}\left(g, \varphi_{\text {matter }}\right) \tag{2}
\end{equation*}
$$

Foundations of GR

- Einstein-Hilbert action:

$$
\begin{equation*}
S=\int_{M} d^{4} x \sqrt{-g}\left[R(g)-2 \Lambda+2 K \mathcal{L}_{\text {matter }}\right] \tag{3}
\end{equation*}
$$

- GR is a theory of the curvature R of a connection ∇. The connection is uniquely determined by the metric by demanding metric compatibility and vanishing torsion.

A Gauge Theory Formulation

Tetrads of spacetime

- At every point in M we may consider a set of 4 linearly independent vectors $\left\{e_{l}\right\}, e_{l} \in T M$ such that $g\left(e_{l}, e_{J}\right)=\eta_{1 J}$. Can be thought of as maps

$$
\begin{align*}
& e: M \times \mathbb{R}^{3,1} \rightarrow T M \\
& \left(x, \hat{e}_{I}\right) \mapsto\left(x, e_{l}^{\mu} \partial_{\mu}\right) \tag{4}
\end{align*}
$$

- The metric at every point can be reconstructed from the duals $\theta^{\prime}\left(e_{\jmath}\right)=\delta_{\jmath}^{\prime}$ with $g=\eta_{\| J} \theta^{\prime} \otimes \theta^{\prime}$.
- Tetrads are defined up to the the isometry group $G=S O(3,1)$ of the Minkowski metric, $\wedge \eta \wedge^{\top}=\eta$.

Tetrads of spacetime

- General Relativity can be reformulated in terms of these tetrads.

- But there is a gauge redundancy $G=S O(3,1)$!

Tetrads of spacetime

There is a gauge theory for tetrads:

- Gauge encoded in a principal bundle $P(G, M) \xrightarrow{\pi} M$ and connection form $\omega \in \Omega(P, \mathfrak{s o}(3,1))$.
- Vector bundle $E=P \times{ }_{\rho} \mathbb{R}^{3,1}$ with fundamental representation ρ.
- E and TM are both vector bundles of the same finite dimension \Rightarrow we have an isomorphism acting on canonical sections of E,

$$
\begin{align*}
& e: E \rightarrow T M \\
& \sigma_{l} \mapsto e_{l}^{\mu} \partial_{\mu} . \tag{5}
\end{align*}
$$

We recover the tetrads from $e^{l}=e\left(\sigma^{\prime}\right)$, and hence a metric $g=\eta_{I J} \theta^{\prime} \otimes \theta^{\prime}$.

Tetradic Palatini theory

The connection in P induces one in $T M$, from which R can be derived.
One can show the EH action becomes

$$
\begin{equation*}
S_{T}=\int_{M} F^{\prime \prime}[A] \wedge \star\left(\theta_{l} \wedge \theta_{J}\right)-\frac{\Lambda}{6} \theta^{\prime} \wedge \theta^{\prime} \wedge \star\left(\theta_{l} \wedge \theta_{J}\right) . \tag{6}
\end{equation*}
$$

- The metric g from θ^{\prime} turns out to naturally allow metric compatibility.
- Varying the action wrt to the gauge field A imposes vanishing curvature.

This is the same curvature from GR!

Tetradic Palatini theory

The connection in P induces one in $T M$, from which R can be derived.
One can show the EH action becomes

$$
\begin{equation*}
S_{T}=\int_{M} F^{\prime \prime}[A] \wedge \star\left(\theta_{l} \wedge \theta_{J}\right)-\frac{\Lambda}{6} \theta^{\prime} \wedge \theta^{\prime} \wedge \star\left(\theta_{l} \wedge \theta_{J}\right) . \tag{7}
\end{equation*}
$$

- The metric g from θ^{\prime} turns out to naturally allow metric compatibility.
- Varying the action wrt to the gauge field A imposes vanishing curvature.

This is the same curvature from GR!

Other formulations

We can play around with this action:

- Holst action adds irrelevant term,

$$
\begin{equation*}
S_{H}=\int_{M} F^{\prime \prime}[A] \wedge\left(\star+\frac{1}{Y}\right)\left(\theta_{l} \wedge \theta_{J}\right) \tag{8}
\end{equation*}
$$

- Can extract tetrads from a two-form B using constraints,

$$
\begin{align*}
S_{C B F}= & \int_{M} B_{I J} \wedge F^{I J}[A]+\varphi_{I J K L} B^{\prime J} \wedge B^{K L}, \tag{9}\\
& \frac{\delta}{\delta \varphi} \rightarrow B^{\prime J} \wedge B^{K L}=\varepsilon^{\| K L} \vee \tag{10}
\end{align*}
$$

States and Observables

Spin-networks

We consider a compact-G gauge theory over an embedded graph φ.

- Space of connections $\mathcal{A}_{\varphi}=G^{\left|\mathcal{E}_{\varphi}\right|}, g_{Y}=\mathcal{P} \exp \left\{-\int_{Y} A\right\}$
- Gauge group $\mathcal{G}_{\varphi}=G^{\left|\mathcal{V}_{\varphi}\right|}, g_{\gamma} \rightarrow g_{t}^{-1} g_{\gamma} g_{s}$

Quantum states will be elements of $\mathcal{H}=L^{2}\left(\mathcal{A}_{\varphi} / \mathcal{G}_{\varphi}\right)$.

Spin-networks

- The action of \mathcal{G}_{φ} on \mathcal{A}_{φ} induces a representation of G on $L^{2}(G)$ "from both sides" and "at each edge". Peter-Weyl theorem:

$$
\begin{equation*}
L^{2}\left(\mathcal{A}_{\varphi}\right) \simeq \bigotimes_{\in \in \mathcal{E}_{\varphi}} \bigoplus_{\lambda \in \Lambda} \mathcal{H}^{\lambda} \otimes \mathcal{H}^{* \lambda} \tag{11}
\end{equation*}
$$

- This can be massaged to

$$
\begin{equation*}
L^{2}\left(\mathcal{A}_{\varphi}\right) \simeq \bigoplus_{\wedge \rightarrow \mathcal{E}_{\varphi}} \bigotimes_{v \in \mathcal{V}_{\varphi}}\left(\bigotimes_{e \in \mathcal{S}_{v}} \mathcal{H}_{e} \otimes \bigotimes_{e \in \mathcal{T}_{v}} \mathcal{H}_{e}^{*}\right) \tag{12}
\end{equation*}
$$

- The Hilbert space is therefore

$$
\begin{align*}
L^{2}\left(\mathcal{A}_{\varphi} / \mathcal{G}_{\varphi}\right) & \simeq \bigoplus_{\wedge \rightarrow \mathcal{E}_{\varphi}} \bigotimes_{v \in \mathcal{V}_{\varphi}} \operatorname{Inv}\left(\bigotimes_{e \in \mathcal{S}_{v}} \mathcal{H}_{e} \bigotimes_{e \in \mathcal{T}_{v}} \mathcal{H}_{e}^{*}\right) \\
& \simeq \bigoplus_{\wedge \rightarrow \mathcal{E}_{\varphi}} \bigotimes_{v \in \mathcal{V}_{\varphi}} \operatorname{Int}\left(\bigotimes_{e \in \mathcal{S}_{v}} \mathcal{H}_{e}, \bigotimes_{e \in \mathcal{T}_{v}} \mathcal{H}_{e}\right) \tag{13}
\end{align*}
$$

Spin-networks

- A general state in \mathcal{H} will have the form

$$
\begin{equation*}
|\psi\rangle=\bigoplus_{\wedge \rightarrow \mathcal{E}_{\varphi}} \bigotimes_{v \in \mathcal{V}_{\varphi}}\left(c_{v}\right)_{j_{1} \ldots j_{n}}^{i_{1} \ldots i_{m}}\left(I_{v}\right) i_{i_{1} \ldots i_{m}}^{j_{1} \ldots j_{n}} \tag{14}
\end{equation*}
$$

- Wave-functions of the connection are constructed as

$$
\psi(A)=\left(\rho_{\text {out }}^{v_{1}}\left(H_{A}^{e_{v_{1}}^{\text {out }}}\right) \circ l^{v_{1}} \circ \rho_{\text {in }}^{v_{1}}\left(H_{A}^{e_{1}^{\text {in }}}\right)\right) \circ \ldots \circ\left(\rho_{\text {out }}^{v_{n}}\left(\left(H_{A}^{e_{v_{n}}^{\text {out }}}\right)\right) \circ 1^{v_{n}} \circ \rho_{\text {in }}^{v_{n}}\left(H_{A}^{e_{v_{n}}^{\text {in }}}\right)\right)
$$

$$
\psi(A)=\left(\rho_{1}\right)_{a}^{i}\left(\iota_{1}\right)_{b c}^{a}\left(\rho_{2}\right)_{j}^{b}\left(\rho_{3}\right)_{d}^{c}\left(\rho_{6}\right)_{e}^{k}\left(\iota_{3}\right)_{f}^{d_{e}^{e}}\left(\rho_{5}\right)_{h}^{f}\left(\rho_{4}\right)_{g}^{l}\left(\iota_{4}\right)_{i}^{g h}\left(\iota_{2}\right)_{k l}^{j}
$$

Observables

For concreteness, we choose $G=S U(2)$ and focus on

$$
\begin{equation*}
\mathcal{H}=\bigoplus_{j_{0}, j_{1}, j_{2}, j_{3}} \operatorname{Inv} v_{S U(2)}\left(j_{0} \otimes j_{1} \otimes j_{2} \otimes j_{3}\right) . \tag{15}
\end{equation*}
$$

- Define the operators $B_{0}^{i}=J^{i} \otimes 1 \otimes 1 \otimes 1, B_{1}^{i}=1 \otimes J^{i} \otimes 1 \otimes 1$, etc.
- The B_{μ}^{i} generate the action of G on $\mathcal{T}=\bigotimes_{i} j_{i}$, so

$$
\begin{equation*}
\left.\mathcal{H} \simeq\left\{|\psi\rangle \in \mathcal{T}\left|\sum_{\mu} B_{\mu}\right| \psi\right\rangle=0\right\} . \tag{16}
\end{equation*}
$$

- Area and volume operators:

$$
\begin{gather*}
A_{\mu}=\sqrt{B_{\mu} \cdot B_{\mu}} \\
V=\sqrt{\frac{1}{3!}\left|\varepsilon_{i j k} B_{2}^{i} B_{1}^{j} B_{3}^{k}\right| .} \tag{17}
\end{gather*}
$$

Observables

For $S U(2)$ the area operator is just the Casimir,

$$
\begin{equation*}
A_{\mu}|\psi\rangle=\sqrt{j_{\mu}\left(j_{\mu}+1\right)}|\psi\rangle \tag{18}
\end{equation*}
$$

A Toy Model in 3d

3d BF theory

We start with the Riemannian Palatini theory in 3d, setting $G=S O(3)$,

$$
\begin{equation*}
S_{T}^{(3)}=\int_{M} \varepsilon_{\| J K} F^{\prime \prime}[A] \wedge \theta^{K} \tag{19}
\end{equation*}
$$

It can be written as a BF theory,

$$
\begin{equation*}
S_{B F}=\int_{M} \operatorname{Tr}(F[A] \wedge B) \tag{20}
\end{equation*}
$$

due to the natural identification $\mathfrak{s o}(3) \simeq T^{*} M$.
Fixing $M=\mathbb{R} \times M^{\prime}$ and the gauge $A_{0}=0$,

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \dot{A}}=B . \tag{21}
\end{equation*}
$$

Path integral quantization

- Formal path integral:

$$
\begin{aligned}
Z(M) & =\int \mathcal{D} A \mathcal{D} B e^{i \int_{M} \operatorname{Tr}(F[A] \backslash B)} \\
& =\int \mathcal{D} A \delta(F[A]) .
\end{aligned}
$$

- Discretization via triangulation Δ and dual 2-complex Δ^{*} :

$$
\begin{array}{cc}
R \subset \Delta & R^{*} \subset \Delta^{*} \\
Z\left(\Delta^{*}\right)=\int \prod_{e \in \mathcal{E}} \mathrm{~d} g_{e} \prod_{f \in \mathcal{F}} \delta\left(\prod_{e \in \partial f} g_{e}\right),
\end{array}
$$

Path integral quantization

The Lie group delta is a function on the group, and can be expanded by Peter-Weyl as

$$
\begin{align*}
& \delta(g)=\sum_{\lambda \in \Lambda} \operatorname{dim}\left(\rho_{\lambda}\right) x_{\rho_{\lambda}}(g) \tag{23}\\
& Z\left(\Delta^{*}\right)=\int \prod_{e \in \mathcal{E}} \operatorname{d} g_{e} \prod_{f \in \mathcal{F}}\left(\sum_{\lambda \in \Lambda} \operatorname{dim}\left(\rho_{\lambda}\right) \operatorname{Tr}\left[\prod_{e \in \partial f} \rho_{\lambda}\left(g_{e}\right)\right]\right) \\
&= \sum_{\Lambda \rightarrow \mathcal{F}} \int \prod_{e \in \mathcal{E}} \operatorname{d} g_{e} \prod_{f \in \mathcal{F}}\left(\operatorname{dim}\left(\rho_{f}\right) \operatorname{Tr}\left[\prod_{e \in \partial f} \rho_{f}\left(g_{e}\right)\right]\right) \\
&=\sum_{\Lambda \rightarrow \mathcal{F}}\left[\prod_{f \in \mathcal{F}} \operatorname{dim}\left(\rho_{f}\right)\right] \int \prod_{e \in \mathcal{E}} \operatorname{d} g_{e} \operatorname{Tr}_{f \in \mathcal{F}}\left[\prod_{f \in \mathcal{F}}\left(\prod_{e \in \partial f} \rho_{f}\left(g_{e}\right)\right)\right] \\
&=\sum_{\Lambda \rightarrow \mathcal{F}}\left[\prod_{f \in \mathcal{F}} \operatorname{dim}\left(\rho_{f}\right)\right] \operatorname{Tr}_{f \in \mathcal{F}}\left[\prod_{e \in \mathcal{E}}\left(\int \operatorname{d} g_{e} \prod_{f: e \in \partial f} \rho_{f}\left(g_{e}\right)\right)\right]
\end{align*}
$$

Path integral quantization

There is a projector onto the invariant subspace for each edge,

$$
\begin{gathered}
\pi_{e}: \bigotimes_{f \in \mathcal{S}(e)} \mathcal{H}_{\rho_{f}} \bigotimes_{f \in \mathcal{T}(e)} \mathcal{H}_{\rho_{f}}^{*} \rightarrow \operatorname{Inv}\left(\bigotimes_{f \in \mathcal{S}(e)} \mathcal{H}_{\rho_{f}} \bigotimes_{f \in \mathcal{T}(e)} \mathcal{H}_{\rho_{f}}^{*}\right) \\
\pi_{e}=\int_{S U(2)} \operatorname{dg} g_{e} \bigotimes_{f \in \mathcal{S}(e)} \rho_{f}\left(g_{e}\right) \bigotimes_{f \in \mathcal{T}(e)} \rho_{f}^{*}\left(g_{e}\right),
\end{gathered}
$$

In 3d each edge is shared by 3 faces, so the projector is simply

$$
\begin{equation*}
\pi_{e}=\int_{S U(2)} \mathrm{d} g_{e} \rho_{1}(g) \rho_{2}(g) \rho_{3}(g) . \tag{25}
\end{equation*}
$$

Path integral quantization

$$
\begin{aligned}
& Z\left(\Delta^{*}\right)=\sum_{\Lambda \rightarrow \mathcal{F}}\left[\prod_{f \in \mathcal{F}} \operatorname{dim}\left(\rho_{f}\right)\right] \operatorname{Tr}_{f \in \mathcal{F}}\left[\prod_{e \in \mathcal{E}} \pi_{e}\right]
\end{aligned}
$$

Boundary states

A Spinfoam $F\left(\Delta^{*}, \rho, \iota\right)$ is a 2-complex colored with algebraic data.

It induces spin-network boundary states, with an amplitude map given by

$$
\begin{equation*}
A\left(\left.\partial F\right|_{R}\right)=\left[\prod_{f \in\left(\mathcal{F} \cap R^{*}\right)} \operatorname{dim}\left(\rho_{f}\right)\right]\left[\prod_{v \in\left(\mathcal{V} \cap R^{*}\right)} 6 j\right] . \tag{27}
\end{equation*}
$$

Boundary states

$R \subset \Delta$

$R^{*} \subset \Delta^{*}$

$\Sigma=\partial R$

$\left.\partial F\right|_{R}=\left(\Sigma^{*}, \partial \rho, \partial \iota\right)$

EPRL Model

4 d BF with constraints

Tetradic Palatini from BF theory, with $G=S L(2, \mathbb{C})$:

$$
\begin{equation*}
S=\int_{M} F^{\prime \prime} \wedge\left(1+\frac{1}{V^{\star}}\right) B_{I I}, \quad B^{\prime \prime}= \pm \star\left(\theta^{\prime} \wedge \theta^{\prime}\right) \tag{28}
\end{equation*}
$$

Construct smeared fields $b_{f}^{\prime \prime}=\int_{f \subset \Delta} B^{\prime \prime}$. The bivector $\star b_{f}$ is simple iff

$$
\begin{equation*}
n_{l}\left(* b_{f}\right)^{\prime \prime}=0, \quad \text { for all } f \text { in the same tetrahedron } t \tag{29}
\end{equation*}
$$

Variable conjugated to A is associated to $\tilde{b}_{f}^{\prime \prime}=\left(1+\frac{1}{\gamma} \star\right) b_{f}^{\prime \prime}$, so quantization will relate it to generators $\mathrm{J}^{\prime \prime}$,

$$
\begin{equation*}
b_{f}^{\prime \prime}=\frac{\gamma^{2}}{\gamma^{2}+1}\left(1-\frac{1}{\gamma^{*}}\right) J_{f}^{\prime \prime} . \tag{30}
\end{equation*}
$$

We will fix $n^{\prime}=\delta_{0}^{\prime}$, corresponding to setting all tetrahedra to be spacelike.

4 d BF with constraints

One then finds that the geometricity constraints restrict the representations of $S L(2, \mathbb{C})$

$$
\begin{equation*}
|(p, n) ; j, m\rangle \xrightarrow{\text { constr. }}|(2 \gamma j, 2 j) ; j, m\rangle, \tag{31}
\end{equation*}
$$

making the Hilbert spaces into $S U(2)$ ones. There is an isomorphism

$$
\begin{gather*}
\text { I: }\left.L^{2}(S L(2, \mathbb{C}))\right|_{\text {constr. }} \rightarrow L^{2}(S U(2)) \tag{32}\\
|(2 \gamma j, n) ; 2 j, m\rangle \mapsto|j, m\rangle,
\end{gather*}
$$

so the boundary space is

$$
\begin{equation*}
H_{\Sigma}=\bigoplus_{j \rightarrow \mathcal{F}} \bigotimes_{e \in \mathcal{E}} \operatorname{lnv}_{S U(2)}\left(\bigotimes_{f \in \mathcal{S}(e)} \mathcal{H}_{j_{f}}^{\left(2 j_{j v}, 2 i_{f}\right)} \bigotimes_{f \in \mathcal{T}(e)} \mathcal{H}_{j_{f}}^{*\left(2 j_{j}, 2 i_{f}\right)}\right) \tag{33}
\end{equation*}
$$

Path integral quantization

$$
\begin{aligned}
Z\left(\Delta^{*}\right) & =\int \prod_{e \in \mathcal{E}} \mathrm{~d} g_{e} \prod_{f \in \mathcal{F}}\left(\sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} \mathrm{d} p\left(n^{2}+p^{2}\right) \operatorname{Tr}\left[\prod_{e \in \partial f}\left(D^{*}\right)^{x}\left(g_{e}\right)\right]\right) \\
& ={\underset{x \rightarrow \mathcal{F}}{ } \int \prod_{e \in \mathcal{E}} \mathrm{~d} g_{e} \prod_{f \in \mathcal{F}}\left(\left(n^{2}+p^{2}\right)_{f} \operatorname{Tr}\left[\prod_{e \in \partial f} D_{f}^{*}\left(g_{e}\right)\right]\right)}={\underset{x \rightarrow \mathcal{F}}{ }\left[\prod_{f \in \mathcal{F}}\left(n^{2}+p^{2}\right)_{f}\right] \int \prod_{e \in \mathcal{E}} \mathrm{~d} g_{e} \operatorname{Tr}_{f \in \mathcal{F}}\left[\prod_{f \in \mathcal{F}}\left(\prod_{e \in \partial f} D_{f}^{*}\left(g_{e}\right)\right)\right]}=\underset{x \rightarrow \mathcal{F}}{\underset{~}{f}\left[\prod_{f \in \mathcal{F}}\left(n^{2}+p^{2}\right)_{f}\right] \operatorname{Tr}_{f \in \mathcal{F}}\left[\prod_{e \in \mathcal{E}}\left(\int \mathrm{~d} g_{e} \prod_{f: e \in \partial f} D_{f}^{*}\left(g_{e}\right)\right)\right],}
\end{aligned}
$$

EPRL Partition Function

$$
\begin{aligned}
& =\sum_{n}\left[\Pi_{k}\right.
\end{aligned}
$$

