

The MIP Timing Detector for the CMS Phase-2 Upgrade

Tahereh Niknejad¹

In collaboration with

E. Albuquerque², D. Bastos¹, R. Bugalho², V. Dubceac², R. Francisco², M. Gallinaro¹, L. Oliveira³, K. Shchelina¹, J. C. Silva¹, J. Varela¹

(1) LIP, Lisbon, Portugal, (2) PETsys Electronics, Oeiras, Portugal, (3) DEE, CTS-UNINOVA FCT-UNL, Caparica, Portugal

Jornadas LIP 2020

TagusLIP Laboratory

TagusLIP activities:

- Development of readout electronics, data acquisition software and firmware for medical applications and HEP
- Design, production and test/validation of detector modules and prototype systems

PETsys electronics is a start-up company created at LIP to develop readout electronics for SiPM based PET systems

ClearPEM (2010)

EndoTOFPET (2013)

TOFPET demonstrator (2016)

PETsys products

Tahereh Niknejad

Jornadas LIP 2020

High-Luminosity HL-LHC Challenge

- HL-LHC targeted luminosity for CMS in phase-2 upgrade is (5-7.5)x10³⁴ Hz/cm² (140-200 pileup events) -> up to 5 times vertex density
 - > This can degrade the identification and the reconstruction of the interaction
 - Exploit the time spread of collision vertices (RMS ~180ps) to provide extra separation power against pileup collisions
 - > Time resolution of 30-50 ps for charge particles throughout the HL-LHC can be achieved

MIP Timing Detector: Design and Technologies

Barrel Timing Layer Sensors:

- LYSO:Ce scintillator crystal bars (~3x3x57 mm²)
- SiPM readout (double ended readout)
- 332k readout channels

BTL Readout Electronics:

 Analog processing and digitization of SiPM signals CMS

PETsys

i_d

• cope with very high rate (2.5 MHz MIP + 5 MHz low E hits per channel)

handle the variation of dynamic range along detector lifetime (factor 4)

Tahereh Niknejad

Challenges:

•

Operation Conditions

- Radiation has a big impact on the SiPM performance
- Strong increase of dark count noise
- Decrease of QE and gain

Integrated luminosity (fb-1)	Number of p.e.	SiPM gain	DCR (GHz)
0	9500	3.8×10^{5}	0
500	9000	2.9×10^{5}	20
1000	8000	2.5×10^{5}	30
2000	7000	1.9×10^{5}	45
3000	6000	1.5×10^{5}	55

• minimize impact of DCR noise on time resolution

HDR2 parameters along BTL life

	= ² d N-1	
НРК Н[DR2	
C _d	14.6 fF	
Cq	1 fF	
C _{grid}	36 pF	
R _q	500 kΩ	
R _d	lkΩ	

40,000

5

Electrical Model of the SiPM

 C_q

 $\mathcal{R}_{\mathsf{R}_{\mathsf{q}}}$

N_{cells}

C_q

 V_{br}

> R_q • K

 \mathbf{C}_{g}

BTL Front-End Chip (TOFHIR) Versions

- TOFHIR stands for Time of Flight High Rate!
- TOFHIR has been developed in collaboration with **LIP** and **PETsys Electronics**
- TOFHiR1 (UMC 110 nm): Available
- TOFHiR2 (TSMC 130 nm): MPW submissions on Feb. 12, 2020

Specification table

	TOFHIR1	TOFHIR2	
Number of channels	16	32	
Technology	UMC 110 nm	TSMC 130 nm	
Voltage	1.2 V, 2.5 V	1.2 V	
Radiation Tolerance	No	Yes	
Compatibility with lpGBT	Yes	Yes	
I/O links	LVDS	CLPS	
L1, L0 Trigger	Yes, No	Yes, Yes	
10-bit SAR ADC (MHz) (*)	10	40	-
Bandwidth (MHz)	350	350	
Input impedance (Ω)	6	6	
DCR noise filter	No	Yes	
Number of TACs and QACs	4	8	
TDC bin (ps)	20	20	
Reference voltages	External	Internal	
Maximum MIP rate/ch (MHz)	1	2.5	
Max low E rate/ch (MHz)	3	5	
Clock frequency (MHz)	160	160	

(*) SAR ADC 40 MHz provided by Krakow group

Tahereh Niknejad

Results with TOFHIR1

- → SiPM type: HDR2 (BTL type)
 - 1 pixel (3x3 mm², 15 um cells)
 - Typical gain in the order of a few 10^5
- → SiPMs are triggered by laser pulses (50 ps pulse width)
- \rightarrow Tests are done at room temperature
- $\rightarrow \sigma^2_{time1-time2} = \sigma^2_{time1} + \sigma^2_{time2}$

- → 200 p.e. laser pulse has the same slew rate as 8000 p.e. LYSO pulse (~ 1 MIP)
- \rightarrow Single channel time resolution is 26 ps
 - Laser pulse with 200 p.e.
 - ToT selection to remove time walk
 - LYSO photostatistics not taken into account

FE Board Prototypes

- FE prototype with TOFHIR1 and ALDO1 ASICs
- 6 connectors for SiPM signals in the back side
- 1728 FE boards in the system, plus spares.

\rightarrow 4 FE prototype have been assembled and tested

\rightarrow All 4 prototype boards are working

DCR Noise Cancellation in TOFHIR2

Post-amplifier consists of:

- Analog delay cell that is approximated by a RC net, with a configurable delay
- Current subtraction that adds the inverted delayed pulse to the original pulse
- Baseline holder

BTL Events Simulation

- \rightarrow LHC frequency 40 MHz
- \rightarrow Bunch width 200 ps

\rightarrow Samples :

22

Each sample is a series of events coming randomly every 25 ns with various amplitudes for a fix duration of time, but the last event (50th) is always 1 MIP (reference event).

Pulses at the beginning of life:

- 9500 p.e. LYSO pulse
- Gain 3.8×10⁵
- No dark count
- SiPM Jitter 100ps
- Temperature 0° C
- cross talk probability 14%
- **Electrical noise**
- TDC digitization (20ps)

Jornadas LIP 2020

Tahereh Niknejad

Timing and Efficiency After the Postamp

Summary

- Tests of the main TOFHIR1 blocks are successfully concluded
 - performance is matching expectations
 - $\circ~$ 10-bit SAR ADC is working
 - Good linearity; noise 0.8 LSB
 - \circ TDC is working
 - Time resolution 15 ps
- TOFHIR1 Single channel time resolution is 26 ps with 200 p.e. laser pulse (~8k p.e. LYSO pulse, wo/ taking into account LYSO photostatistics
- ➢ FE prototype has been fabricated and tested. Results are very encouraging
- TOFHIR2_v1 submitted on Feb 12, 2020
- The estimated time resolution with TOFHIR2 at the beginning of life is ~30 ps and at the end of life is ~89 ps for double-ended readout
- \succ The event detection efficiency at the beginning and end of life is ~99%
 - Reasonable compromise between time resolution and detection efficiency in the presence of pileup has been achieved

Thank you for your attention